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New algorithm for the heliocentric distances and fixed places of the planets in Solar system and extra-solar 

planetary systems is proposed. The Titius-Bode law, which is not valid for Neptune, Pluto, Eris, etc., is 

generalized on this way. We propose linear quantization of space in the gravitational field of the Sun and the 

stars on the base of the exponential function id
~

 = 2
x-2 

+ C ,
  

as C = 1 for every i = 1, 2, 3,…, 21 (i = 1 for 

Mercure, i = 2 for Venus, i = 3 for Earth, i = 4 for Mars, i = 5 for Ceres, i = 6 for Jupiter, i = 7 for Saturn, i = 8 

for Uranus, i = 9 for Neptune, i = 10 for Pluto, i = 11 for Eris, etc.). This function id
~

 multiplied with the 

mathematical constant π forms the interpolating linear functional )
~

( fli , which contains information about the 

distance (in AU) of the i-th planet to the Sun, or the star, respectively. This functional is nonlinear because of the 

nonlinear dependence between the distance ri from the Sun (the star) [in AU] and orbital period Ti (in years) 

according to the second Kepler law. After this law the radius vector 
r� = ri  from the Sun (the star) to the given 

planet describes equal surfaces for equal time intervals. The obtained algorithm can be applied for 

determination of the distances and fixed places of the planetary moons also.  

Introduction 
The distances of the eight planets now known from the Sun 

range from 0.4 AU in the case of Mercury, to about ≈ 30 AU 

for Neptune and ≈ 40 AU for dwarf planet Pluto. In the 18th 

century Titius (1729-1796) and Bode (1747-1826), and later 

Wolf (1816-1893), showed that the average heliocentric 

distances of the planets approximately followed an empirical 

law. Originally applied to the planets from Mercury to Saturn, 

Uranus being added later, the law is given by [1, 2, 3, 4]:  

 ri  = 0.4 + 0.3 × 2
n     

                          (1) 

where ri is the heliocentric distance expressed in AU, n takes 

the value of  − ∞  for Mercury, 0 for Venus, and is increased 

by 1 for each successive planet (Table 1). The Titius-Bode 

law (TBl) is valid, with a moderate degree of error (less then 

5%), as far as Uranus; but for Neptune the error increase is to 

28.9%, and for Pluto and for Eris still more - to 95.4% and to 

127.6%, respectively (Table 1). Thus, these errors increase 

with the growth of the heliocentric distances ri . Note that the 

value n = 3 does not correspond to a planet as such, but to the 

approximate center of the asteroid belt. It is possible that the 

asteroids consist of partially accreted material that was not 

able to form a single body. This hypothesis would explain the 

existence of the asteroid belt at the heliocentric distance 

predicted by the Titius-Bode law.  

The formula (1) given above, known as the Titius-Bode 

law, is far from exact, as can be seen by comparison with the 

observational data. Furthermore, despite persistent efforts of 

generations of scientists to discover a physical basis for this 

‘law’, no fully satisfactory explanation has ever been 

proposed [1, 2, 3].  

It is immediately seen also that for Mercury any effort to find 

a physical meaning of the parameter n = − ∞ would fail [5]. 

Because of that a lot of specialists give different approaches 

and solutions. In [6, 5] a new exponential TBl type relation 

for the Solar system is proposed. In the monograph [7] a 

logarithmic spiral formula is offered. The goal of the present 

paper is the presentation of a new improved algorithm for the 

heliocentric distances and fixed places of the planets in the 

Solar system. This algorithm must possess an increased 

accuracy. 

New algorithm for the distances and fixed places of 

the planets  
The first feature that can be seen in the TBl (1) is the 

presence of a geometric progression. The following 

exponential function corresponds to elements of this 

progression: 

             y = 2
x
,
  
    as      x = 0, 1, 2, … 19                       (2) 

In order to satisfy the needed properties of this function, i.e. 

to contain also the zero member, we must have  

      y = 2
x-2

,
  
    as      

            
x = 0, 1, 2, … 21                    (3) 

To answer the question why we observe the specific Solar 

system structure with respective characteristic parameters, we 

have to follow and accomplish step by step the algorithm 

described in the columns in Tables 2 and 3, with the aid of 

function (3). This algorithm operates with the value of the 

mathematical constant π. This value converts the interpolation 

function denoted in Table 2 (column 10) with 

 id
~

 = 2
x-2 

+ C ,
  
    as      C = 1                            (4)  

in an interpolating linear functional (column 11), which is 

denoted by )
~

( fli . The approximate relations are valid here 
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as i = 0, 1, 2,… 21. Their values are near the values of the 

interpolation linear functional 

       
iiiii rrflrfl 870.9)(10)(

2

197 ==≅= π          (6) 

or, in other words, the equality 

)
~

( fli = )( fli  

is fulfilled. In (5, 6) ri is the the absolute value of the radius-

vector from the initial point of the 3D coordinate system Oxyz 

(the Solar centre) to the centre of the specified planet, which 

is a scalar value.  

In Figure 1 the graphics of the interpolation linear 

functional )
~

( fli (column 11 in Table 2) is presented, and the 

independent argument of the functional is the interpolation 

function (4) for each i = 0, 1 , …., 10. This function 
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determines the values of the functional, as well as the exact 

fixed position of each planet (or of the set of bodies, as in the 

case of the asteroid belt).  

The values of the independent variable of the interpolation 

function (4) are denoted by the symbol ix~ , i = 0, 1, …., 10; 

they are given in the first line of values at the abscissa axis in 

Figure 1, and also in columns 8 and 9 in Table 2. 

In the next line in Figure 1 below the axis � ix~  the values of 

the function id
~

 are presented. The lower and, respectively, 

the upper boundaries of the intervals of variation of the values 

id
~

 are given in the bottom line.  

The object of our attention is the step-wise (or threshold) 

behavior of the curve ai (column 16 in Table 2), which is 

determined by the discrete property of the positions of the 

planets. A fixed place of any planet can be only a whole 

natural number - under conditions of the continuing variations 

of the interpolation function id
~

 (column 14 in Table 2). This 

leads to continuing variations of the values of the 

interpolation linear functional )
~

( fli . The graphic of the 

linear function      y = f(x) = | x |     which is defined from the 

equation  ix~  = ai    for each   i = 0, 1, …., 10  is obtained on 

this way. 

We see another feature of the graphics of ai : the increase of 

values of ix~  along the abscissa leads to an increase also of 

the width of the intervals, in which the parameter ai = 

constant (which determines the successive number of the 

specified body in orbit) does not change. These are the 

horizontal parts (plateaus) of ai under conditions of the 

varying values of the interpolation function id
~

 and the 

interpolation functional )
~

( fli  in the same intervals. 

In other words, with the increase of the values of the 

parameter   ix~ , i = 1, 2, …10   the parameter ai comprises 

bigger intervals of )
~

( fli  values and takes bigger space 

areas, where the force of the gravitational field F between the 

central body Sun � and the planets (incl. dwarf planets) acts. 

A typical example for this are the two planets Uranus and 

Neptune, for which the parameter ai obtains values, 

respectively 8.1 and 8.2, i.e. both planets occupy the 8-th 

position in the Solar system. 

The hypothetical planet Vulcan  is given at ai = 0 in Table 2 

(in brackets and with a questional sign). It is situated between 

the Sun and Mercury, i.e. Vulcan is not yet discovered intra-

Mercurial planet or planetoid. But it is not out of 

consideration and it is object of searching [8]. It is possible 

that it had existed in the initial phase of the Solar system 

formation. Our algorithm gives its place at ai = 0.  

Observing a planet inside the orbit of Mercury is extremely 

difficult, since the telescope must be pointed very close to the 

Sun, where the sky is never black. Also, an error in pointing 

the telescope can result in damage for the optics, and injury to 

the observer. The huge amount of light present even quite 

away from the Sun can produce false reflections inside the 

optics, thus fooling the observer into seeing things that do not 

exist. 

The best strategy for observations is to wait for the planet 

transit on the Sun disk. A small, round dark spot can be seen 

moving, as happens regularly with Mercury and Venus. 

In 1915, when Einstein successfully explained the apparent 

anomaly in Mercury's orbit, most astronomers abandoned the 

search for Vulcan. A few, however, remained convinced that 

not all the alleged observations of Vulcan were bogus. 

Among these was H.C. Courten (Dowling College, New 

York) [8]. Studying photographic plates of the 1970 eclipse of 

the Sun, he and his associates detected several objects which 

appeared to be in orbits close to the Sun (Miami Herald, 15 

June 1970). Even accounting for artifacts, H.C. Courten felt 

that at least seven of the objects were real. The appearance of 

some of these objects was confirmed by another observer in 

North Carolina, while a third observer in Virginia saw one of 

them.  

 
H.C. Courten believed that an intra-Mercurial planetoid 

between 130 and 800 km in diameter was orbiting the Sun at 

a distance of about 0.1 AU. Other images on his eclipse plates 

led him to postulate the existence of an asteroid belt between 

Mercury and the Sun [8]. 

None of these claims has ever been substantiated after 

more than thirty years of observation. It has been surmised, 

however, that some of these objects - and other alleged intra-

Mercurial planets - may exist, being nothing more than 

previously unknown comets or small asteroids. Today, the 

search continues for these so-called Vulcanoid asteroids , 

which are thought to exist in the region (0.06 – 0.21 AU) 

where Vulcan was once sought. None have been found yet 

and searches have ruled out any such asteroids larger than 

about 60 km [3, 8]. 



Fundamental Space Research 2009  

OTHER RELATED TOPICS 244 

TABLE 1.  

Titius-Bode law for the planets in the Solar system (Ceres, Pluto and Eris are dwarf planets) 

1 2 3    ? 4 5 6 7 

Planet Symbol ri n T-Br (1) Error, % li = 10.ri 

  Mercury 
 

0.387 − ∞ 0.4 3.4 3.87 

  Venus 
 

0.723 0 0.7 3.3 7.23 

  Earth 
 

1.000 1 1.0 0 10.00 

  Mars 
 

1.524 2 1.6 4.9 15.24 

  (Ceres) 
 

2.760 3 2.8 1.4 27.60 

  Jupiter 
 

5.203 4 5.2 0.6 52.03 

  Saturn 
 

9.546 5 10.0 4.8 95.46 

  Uranus 
 

19.200 6 19.6 2.1 192.00 

  Neptune 
 

30.090 7 38.8 28.9 300.90 

  (Pluto) 
 

39.500 8 77.2 95.4 395.00 

  (Eris)  67.665 9 154 127.6 676.65 

The planets (and dwarf planets Ceres, Pluto and Eris) are listed here by their average distances ri  from the Sun. 

TABLE 2.  

Model for the macro parameters of the planets in the Solar system presented as  

algorithm for determination of their heliocentric distances and fixed places 

1 8 9 10 11 12 13 14 15 16 

Planet 
ix~  ia~  

id
~

 )
~

( fli  i∆
~

 )
~

(,~ fdo ii π  id
~

 id  
ai 

Vulcan ? x0 0 1.25 3.927 0.25 [1,    1.25] - (1.000) 0 

Mercury  x1 1 1.50 4.712 0.25 [1.25, 1.5] 1.50 1.232 1 

Venus   x2 2 2 6.283 0.50 [1.5,      2] 2 2.301 2 

Earth x3 3 3 9.425 1 [2,         3] 3 3.183 3 

Mars x4 4 5 15.708 2 [3,         5] 5 4.851 4 

(Ceres)    x5 5 9 28.274 4 [5,         9] 9 8.795 5 

Jupiter x6 6 17 53.407 8 [9,       17] 17 16.880 6 

Saturn x7 7 33 103.672 16 [17,     33] 33 30.386 7 

Uranus x8 8 65 204.203 32 [33,     65] 65 61.116 8.1 

Neptune x9 9 129 405.265 64 [65,   129] 65 95.780 8.2  

(Pluto) x10 10 257 807.389 128 [129, 257] 129 125.733 9 

(Eris) x11 11 513 1611.636 256 [257, 513] 257 � 257 10 

 x12 12 1025 3220.129 512 [513, 1025] 513 - 11 

 x13 13 2049 6437.118 1024   [1025,  2049] 1025 - 12 

 x14 14 4097 12871.094 2048   [2049,  4097] 2049 - 13 

 x15 15 8193 25739.047 4096   [4097,  8193] 4097 - 14 

 x16 16 16385 51474.952 8192   [8193,  16385] 8193 [6366, 16385] 15 

 x17 17 32769 102946.763 16384  [16385,  32769] 16385 [16385, 32769] 16 

 x18 18 65537 205890.384 32768 [32769,  65537] 32769 [32769, 63632] 17 

 x19 19 131073 411777.626 65536 [65537,  131073] 65537 [63632, 159155] 18 

 x20 20 262145 823552.111 131072 [131073;262145] 131073 [159155, 5.E+5] 19 

 x21 21 524289 1647101.08 262144 [262145;524289] 262145 - 20 

 - - - - - - 524289 - 21 

Order refers to the position among other planets with respect to their average distance ri from the Sun. 
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TABLE 3.  

Algorithm for determination of the macro parameters of planets in the Solar system on the basis of  

Kepler’s second law and the corresponding statistical data for degree of approximation of )( fli  

1 17 18 19 20 21 7 

Planet Ti, years )
~

( fli  ii rfl
2)( π=  Accuracy, % Accuracy, % li = 10.ri 

       

Mercury 
 

0.241 3.844 3.820 99.328 99.376 3.87 

Venus 
 

0.615 7.130 7.136 98.617 99.916 7.23 

Earth 
 

1.000 9.870 9.870 98.700 100.00 10.00 

Mars 
 

1.881 15.047 15.041 98.734 99.960 15.24 

(Ceres) 
 

4.600 27.066 27.340 98.065 98.998 27.60 

Jupiter 
 

11.862 51.404 51.351 98.797 99.897 52.03 

Saturn 
 

29.458 94.445 94.215 98.937 99.756 95.46 

Uranus 
 

84.018 190.002 189.496 98.959 99.734 192.00 

Neptune 
 

164.780 297.974 296.976 99.028 99.665 300.90 

Pluto 
 

248.400 389.389 389.849 98.579 99.882 395.00 

    98.774* 99.818* 

The planets are listed here by orbital period, from shortest to longest. 

* Arithmetical mean level of approximation for all planets.  

 

Accuracy  
   Columns 20 and 21 in Table 3 demonstrate the results of the 

detailed statistic analysis of the accuracy of coincidence, 

which is evaluated as the approximation level in percent of  

the interpolation linear functional  )
~

( fli  (column 18 in 

Table 3) related to: 

   (1) the classical linear functional li (f) = 10 ri (column 7 in 

Table 1) and 

   (2) the corrected approximated linear functional presented 

in column 19 in Table 3. 

 It is seen that after this last correction the arithmetical 

mean level of approximation of the functionals is increased 

from 98.774% to 99.818% for all planets of the Solar system. 

This is shown in the additional rows in columns 20 and 21 in 

Table 3.  

Conclusion  
The studies in this work show that the Titius-Bode law in its 

classical form (1), represents only a part, or a fragment, of the 

here proposed generalized mathematical model. This model is 

presented as an algorithm in Tables 2 and 3 and it is 

illustrated by Figure 1. It describes well the observed 

macrostructure and macro parameters of the eight planets and 

of both dwarf planets (Ceres and Pluto) in the Solar system, 

which are shown in Tables 1, 2 and 3.  

    The Titius-Bode law leads to a considerable inaccuracy or 

deviation from the observed data, especially for the planet 

Neptune and for the dwarf planets Pluto, Eris, etc. (Table 1). 

The TBl error increases with the growth of the heliocentric 

distances ri . In this relation the presented new improved 

algorithm for the heliocentric distances and fixed places of 

the planets in the Solar system [10] is much more precise and 

possesses the corresponding physical meaning. This method 

can be used at the investigation of the extra-solar planetary 

systems also. The developed here algorithm can be applied 

for determination of the distances and fixed places of the 

moons of Jupiter [11], Neptune [12], Uranus [13], Saturn [14] 

etc., and the moons of the exo-planetary systems. 
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