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Recent CMB Observations Enable to Find the Total Gravitational Energy of a Mass 
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The astronomical observations indicate that the universe expands with acceleration and it has a finite 

particle horizon. The recent Cosmic Microwave Background (CMB) observations confirm the universe is 

homogeneous, isotropic and asymptotically flat. The total gravitational energy of an arbitrary body, having 

mass m, is the gravitational potential energy originating from the gravitational interaction of the body with all 

masses of the observable universe, i.e. within the particle horizon. The flat geometry of the universe enables to 

determine the total gravitational energy of the mass m within the framework of Newtonian gravity in Euclidean 

space. By this approach, it has been found the modulus of the total gravitational energy of a mass m is close to 

its rest energy E=mc
2
. Therefore, the total energy of an arbitrary mass m, including its total gravitational 

energy, is close to zero, which is a substantial result. Besides, the smoothed gravitational potential in an 

arbitrary point of the observable universe appears close to – c
2
, where c is the speed of the light. 

 

Introduction 
In Big Bang cosmology, the observable universe consists 

of the galaxies and other matter that we can in principle 

observe from Earth in the present day, because light (or other 

signals) from those objects has had time to reach us since the 

beginning of the cosmological expansion. The total 

gravitational energy of a body having mass m is the 

gravitational potential energy of the mass m, originating from 

the gravitational interaction of the body with all masses in the 

observable universe. This quantity obtains limited value if the 

particle horizon of the universe is finite. Besides, to determine 

the total gravitational energy of a mass m, the geometry and 

density of the universe need to be known.  

The problem for the total average density of the universe 

ρ  acquires significance when it has been shown that the 

General Relativity allows to reveal the large-scale structure 

and evolution of the universe by simple cosmological models 

[1-3]. Crucial for the geometry of the universe appears 

dimensionless total density 
c

ρρ /=Ω , where �c is the critical 

density of the universe. The most trustworthy total matter 

density Ω has been determined by measurements of the 

dependence of the anisotropy of the Cosmic Microwave 

Background (CMB) upon the angular scale. The recent results 

show that � � 1±��, where the error �� decreases from 0.10 

[4, 5]  to 0.02 [6]. The fact that Ω is so close to a unit is not 

accidental since only at � = 1 the geometry of the universe is 

flat (Euclidean) and the flat universe was predicted from the 

inflationary theory [7]. The total density Ω includes densities 

of baryon matter �b � 0.05, cold dark matter �c � 0.25 [8] 

and dark energy �� � 0.70 producing an accelerating 

expansion of the universe [9, 10]. 

The found negligible CMB anisotropy 
T

Tδ
~ 10

-5
 indicates 

that the early universe was very homogeneous and isotropic 

[11]. Three-dimensional maps of the distribution of galaxies 

corroborate homogeneous and isotropic universe on large 

scales greater than 100 Mps [12, 13]. In the present paper, the 

results of recent CMB observations are used to determine the 

total gravitational energy of a body having mass m placed in 

an arbitrary location, far away from strong local gravitational 

fields. Such fields appear close to neutron stars, black holes, 

nuclei of galaxies and quasars. 

Determination of the total gravitational energy of an 

arbitrary mass 
Finite Hubble time H

-1
~1.4x10

10
 years (age of the universe) 

and finite speed of light c set a finite particle horizon R 

beyond which no material signals reaches the observer. 

Therefore, the possible matter beyond the particle horizon 

does not affect the observer. As a result, a body having mass 

m interacts gravitationally with all masses mi at distances 

ri�R, where R~c/H is the Hubble distance and 

H=H0h≈70km.s
-1

 Mpc
-1

 is the Hubble constant [14]. All these 

masses form the observable universe. The total gravitational 

energy of a body having mass m is the finite gravitational 

energy of the mass m, originating from the gravitational 

interaction of the body with all masses within the particle 

horizon.  

The customary approach used for such cosmological 

problems is in the framework of the General Relativity, since 

at cosmological distances the space curvature should be taken 

into considerations. But, on account of the total density � = 1, 

the global geometry of the universe appears flat and the space 

curvature is zero. This enables to apply Newtonian gravity in 

Euclidean space for solution of this cosmological problem. 

Thus, the problem of the total gravitational energy of a 

mass m transforms into the classical problem of the 

gravitational potential in the centre of a homogeneous 

isotropic sphere having a finite radius R ~ c/H and 

density
c

ρρ Ω= . Therefore, the total gravitational energy U 

of a mass m in the homogeneous and isotropic universe, far 

away from strong local gravitational fields, would be 

expressed by equation: 
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where 0 is an arbitrary location of an observer and R ~ c/H is 

his particle horizon, i.e. ‘radius’ of the observable universe. 

The integration of (1) is made in Euclidean 3-dimensional 

space. 

Similar approach has been used in [15]. According the 

authors, Newtonian gravity is acceptable for the calculation of 

the total gravitational energy even in the case of � << 1. Still 

more the applied approach would be adequate in the case of 

��1 [16]. 
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The critical density of the universe �c determines [17] from 

equation: 

  
G

H
c

π
ρ

8

3
2

=  (2) 

where G is the gravitational constant. 

In view of 
c

ρρ Ω=  and (2), the equation (1) transforms 

into: 

  
22

4

3
HmRU Ω−=  (3) 

In consideration of R ~ c/H, we obtain: 

  
22

4

3

4

3
mcmcU −=Ω−≈  (4) 

The equation (4) shows that the modulus of the 

gravitational energy of a body, originating from the 

gravitational interaction of the body with all masses within 

the particle horizon, is approximately (with accuracy to a 

factor 3/4) equal to its rest energy E = mc
2
. Thus, the rest 

energy of an arbitrary mass m is approximately balanced with 

its total gravitational energy. Therefore, the total energy of an 

arbitrary mass m, including its total gravitational energy, is 

close to zero, which is a substantial result. 

The factor 3/4 in (4) most likely arises as a result of the use 

of approximation R ~ c/H in equation (3). This approximation 

is valid with accuracy to the coefficient k ~ 1 depending on 

the specific cosmological model of the expansion, i.e. R = 

kc/H. Clearly, for 3/4=k  ≈ 1.155 the equation (4) of the 

total gravitational energy of a mass m will be replaced from 

equation: 

  
2222

4

3
mcmcmckU −=Ω−=Ω−=  (5) 

According to the definition, the total gravitational energy U 

of the mass m is equal to the work, which does the gravity 

originating by all masses in the observable universe for a 

removal of the mass m from its current location to the infinity. 

Therefore, the rest energy E = mc
2
 ~ – U of a mass m is close 

to the gravitational energy, which would be released if the 

mass were moved from the infinity to its current location. 

The smoothed gravitational potential ϕ  in an arbitrary 

point of the homogeneous and isotropic universe, far away 

from strong local gravitational fields, follows from (4): 

  22 ~
4

3
cc

m

U
−Ω−≈=ϕ  (6) 

The equation (6) shows that the smoothed gravitational 

potential in an arbitrary point of the observable universe 

appears close to – c
2
, where c is the speed of the light. Since 

the observable universe appears equipotential 3-dimensional 

sphere, no additional (cosmological) gravitational force acts 

on the masses.  

According (6), the smoothed gravitational potential ϕ in an 

arbitrary point of the homogeneous and isotropic universe 

depends linearly from the density of the universe Ω. Clearly, 

only in a case of � ~ 1, the smoothed gravitational potential is 

ϕ ~– c
2
. If the universe was consisted of baryonic matter only, 

than total density Ω≈0.05 and ϕ <<c
2
, but the high densities 

of the cold dark matter and dark energy increase the density 

to �=1. In result, the universe appears flat and the modulus of 

the gravitational energy of a body having mass m is close to 

its rest energy. 

Conclusions 
The astronomical observations indicate that the 

accelerating universe has a finite particle horizon. The recent 

CMB observations confirm the universe is homogeneous and 

isotropic on large scales and the geometry is asymptotically 

flat. The flat geometry of the universe enables to determine 

the total gravitational energy of an arbitrary mass m within 

the framework of Newtonian gravity in Euclidean space. 

Thus, the problem of the total gravitational energy of a mass 

m transforms into the classical problem of the gravitational 

potential in the centre of a homogeneous isotropic sphere 

having a finite radius R ~ c/H. 

By this approach, it has been found the modulus of the 

gravitational energy of a body, originating from the 

gravitational interaction of the body with all masses of the 

observable universe, is close to its rest energy E=mc
2
. Thus, 

the rest energy of an arbitrary mass m is approximately 

balanced with its total gravitational energy. Therefore the 

total energy of an arbitrary mass m, including its total 

gravitational energy, is close to zero, which is a substantial 

result. Besides, the smoothed gravitational potential � in an 

arbitrary point of the universe is close to – c
2
. Finally, it has 

been shown that these evaluations are valid only in a case of 

� ~ 1, i.e. in a flat universe. 
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