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Entering wider into their application stage remote sensing technologies face higher requirements to the 

accuracy of the information they provide. Because of the raising need for reliability of the information products, 

ground-based observations are considered one of the pillars of remote sensing. This paper presents the results 

from ground-level studies aimed at the empirical modelling of crop yield using multispectral and multitemporal 

data. 
 

Introduction 
A strong stress is being put in the past years on the 

application and added-value of remotely sensed data. 

Agricultural monitoring is an important application of remote 

sensing technologies associated with plant growth 

assessment, stress detection, yield forecasting. For precision  

agriculture running [1], regular and timely information is 

needed about plant growth in order to assess crop 

development and predict yield [2-4]. The acquired 

multispectral data are particularly effective in deriving crop 

biophysical parameters [5-8]. 

Ground-level spectral modeling used in land cover studies, 

data analysis and  algorithm validation is an integral part of 

remote sensing technologies [9-12], all the more that data 

integration for achieving higher reliability has become 

recently a leading concept in remotely sensed data application 

[13, 14]. 

This paper presents some results of in-situ empirical 

modeling of the relationship between cereals spectral 

reflectance and yield. Grain yield is related to plant spectral 

data acquired at different development stages as well as to 

spectral data accumulated during the entire growing season. 

The objective of the study was to develop and test VIS-NIR-

vegetation indices as indicators of the variability of the 

production of cereal crops through plant seasonal reflectance 

responses. This relation is biophysically justified by the 

dependence of crop reflectance properties on such agronomic 

parameters as biomass, leaf area, chlorophyll, etc. [4-8]. Crop 

parameters determine the variance of spectral features and, on 

the other hand, are bioindicators of yield [11, 15]. This fact is 

used here for verification of spectral predictions through 

biophysical yield models. 

Materials and Methods 
Field VIS and NIR reflectance was measured with a 

portable spectrometer in discrete narrow bands between 400 

and 800 nm. Spectral measurements were carried out over 

winter wheat and spring barley crops at week interval during 

plant development, from emergence till harvest. The objective 

was to establish empirical relationships between plant 

reflectance properties and yield. Observed crop characteristics 

(biometrical variables) included above-ground biomass, leaf 

area index, density, canopy cover and others. 

Yield data were analysed against various spectral 

(vegetation) indices which are routinely implemented data 

transformations [16-19], and yield predicting models were 

developed. Two types of spectral predictors were examined: 

single-date vegetation indices measured at different 

phenological stages of plant development, and temporal sums 

of these indices accumulated during the entire season. The 

calculated indices were narrow band reflectance ratios 

including two or more wavelengths, normalized differences 

(NDVI) involving various two-band combinations. The data 

sets were statistically analysed to examine the correlations 

and derive empirical relationships between crop reflectance 

signatures (vegetation indices) and yield. Simple regression 

modelling was applied. In order to assess the applicability of 

the developed models, yield predictions from single-date and 

multitemporal spectral measurements were validated through 

comparison with estimations from yield dependences on crop 

canopy characteristics (bioparameters). 

Results and Discussion 
Spectral data transformations (vegetation indices VI) were 

used as inputs in yield prediction models. Data statistical 

processing included regression analysis for the establishment 

of empirical relationships between various spectral indices 

and yield. Additionally, in order to verify spectral predictions, 

crop variables (biomass, leaf area index, etc.) were linked to 

yield. 

Various vegetation indices have been calculated from plant 

reflectance factors in spectral bands where the greatest 

differences in reflectance exist, i.e. in the green (G, 550 nm), 

red (R, 670 nm) and near infrared (NIR, 800 nm) bands. The 

wavelengths selected correspond to absorption and peak 

reflectance of vegetation spectra. The variance of vegetation 

reflectance properties in these bands is associated with the 

variance of plant biometrical parameters. Different 

combinations of spectral ratios were examined for their 

correlation with crop yield. Many of them demonstrated high 

r2 values ranging from 0.8 to 0.93 and depending on plant 

growth stage. For further analysis spectral indices were 

chosen from those having the best statistical correlation with 

grain yield, the derived models being significant at the 95% 

level of confidence. The VIs values varied significantly 

between crops with varying bioparameters. This provided for 

reliable statistical modelling. The performance of VIs was a 

function of plant growth stage as well. 

The coefficients of determination (r2) of the linear 

regression of winter wheat yield with some vegetation indices 

at two phenological stages of plant development are given in 

Table I. Similar high correlations were found for spring 

barley as well. Highest correlations of spectral indices with 

cereals grain yield were observed at the most active 

vegetative stages (tillering, stem elongation, heading, ear-

filling). This fact is explained by pronounced differences in 

the spectral reflectance with varying crop state during this 

period of plant development (see also Fig.2a where the 
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temporal NDVI(R, NIR) behaviour of spring barley 

treatments throughout the growing season is shown). 

TABLE I 

Correlation of Winter Wheat Yield with Vegetation Indices at Ear-

Filling and Milk Ripeness Phenological Stages 

vegetation index 

VI 

ear-filling 

stage 

milk ripeness 

stage 

NDVI (NIR,R)) 0.85 0.90 

NIR/R  0.81 0.89 

NDVI (G, NIR) 0.80 0.83 

NIR/G 0.93 0.85 

(NIR-G)/R 0.90 0.88 

NIR/(G+R) 0.92 0.90 

NIR/(G*R) 0.87 0.91 

G/(G+R+NIR) 0.88 0.81 

In Table II winter wheat yield (kg/dca) prediction models 

from spectral and biometrical data at plant heading stage are 

given. The correlation keeps high at plant ‘green’ stages 

before full maturity. Quantitative relationships linking 

biophysical variables to yield are useful for verifying spectral 

yield forecasts. 

TABLE II 

Winter Wheat Yield Prediction Models from 

Multispectral and Biometrical Data at Heading Stage 

predictor model a b r2 

NDVI (NIR ,R) a+bx -323 959.9 0.91 

NIR/R a+bx 598 46.74 0.89 

NIR/(G+R+NIR) a+bx 856.7 1616 0.91 

biomass ax+bx2 162.9 -12.32 0.92 

leaf area index ax+bx2 151.1 -5.933 0.95 

Fig. 1 presents two of the empirical equations from Table II 

illustrating yield predictions by spectral and biometrical data.  
 

                                  a                                b 

Fig. 1 Empirical regressions of winter wheat yield on NDVI(NIR, R) (a) 

and biomass (b) at heading stage 

 

Good correspondence was observed between yield 

predictions from spectral and biophysical estimates. For 

instance, the following equation was derived to describe the 

correspondence between yield estimates from leaf area index 

(LAI) and NDVI(NIR,R) models:  YLAI = 

68.23+0.91YNDVI(NIR,R) with r2 = 0.97. Using forecasts 

trough different predictors (spectral as well as biophysical) 

might improve yield prediction accuracy. 

The analysis of the acquired spectral data showed that 

many VIs were confidently related to crop yield throughout a 

bigger portion of the growing season. Multitemporal patterns 

of different spring barley treatments are shown in Fig, 2a. 

They contain data from emergence through ripening and full 

maturity taken at weekly intervals on 13 dates during the 

growing season. Cumulative spectral measurements distinctly 

monitor plant ontogenetic changes, along with differentiating 

between crops state. One advantage of using multitemporal 

predictions is that they account for any unfavorable effects on 

crop growth that might occur during the development season, 

and thus serve as “dynamic” predictors. Fig. 2b shows the 

derived empirical relationship between crop yield and the sum 

of NDVI(NIR,R) values measured during plant growth. 
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                                  a                                b 

Fig. 2 NDVI(NIR,R) temporal behaviour throughout spring barley 

growing season (a) and yield prediction model from NDVI(NIR,R) entire 

season sum (b) 

 

The example in Fig. 3 presents the actual and estimated 

through 	NDVI(NIR,R) yield from differently fertilized spring 

barley treatments. Using the relationship from Fig. 2 the grain 

yield was spectrally predicted and compared to the actually 

gained. 
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Fig. 3 NDVI(NIR,R) temporal profile (a) of barley treatments with 

equal nitrogen concentration but different fertilizer: KNO3 (1), 

NH4NO3 (2), (NH4)2SO4 (3); actual grain yield () compared to the 

estimates (---) from 	NDVI(NIR,R)  (b) 

Regression analysis between various VIs temporal sums 

(	VI) and yield was performed to fit the empirical equations. 

Linear relationships for different time intervals were obtained 

with very good statistical confidence (r
2
>0.9). Some of the 

highest ranked indices for yield prediction are summarized in 

Table III.  
TABLE  III 

Linear Yield Prediction Models from VI Whole-Season Sum 

spectral index a b r2 

NDVI (NIR ,R) -554 136 0.95 

NIR/R -296 13 0.95 

NIR/(G+R+NIR) -1733 275 0.9 

NDVI (G, R) 40 174 0.91 
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Conclusions 
The applicability of  spectral transformations (vegetation 

indices) for yield forecasting in reference to cereals 

production has been examined and analysed for different 

periods of crop development. Proposing empirical simple 

least squares regression models to forecast cereals yield, this 

study proved that the yield variation was well accounted for 

by spectral single-date and multitemporal data. Statistically 

significant relationships have been found between spectral 

reflectance and crop yield. Reflectance temporal behaviour 

revealed increased sensitivity to crop yield. Spectral temporal 

sums contributed to yield prediction with as good accuracy as 

of the estimates from crop biophysical varaiables. 

The spectral  models allowed discrimination between crop 

state during plant development and extraction of quantitative 

information about crop yield. Derived for different 

phenological stages, the developed models allow to monitor 

crop production potential and serve as early warning 

indicators of possible future reductions in yield due to 

growing conditions. Yield forecasts using different spectral 

predictors and supported by biophysical relationships improve 

the accuracy of predictions. 

Advantageous aspects of the work are: the simple modeling 

approach for linking reflectance data with plant yield, the 

phenological differentiation of the models resulting in early 

warning possibility, time-integrated data accounting for the 

growing conditions during the whole plant development. 
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