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Texture and spectral reflectance analysis were applied for identification and discrimination of the main rock-

forming minerals of the rocks. Two representatives of magmatic and metamorphic rocks - amphibole gabbro and 

kyanite schist that have wide occurrence on the territory of Bulgaria were investigated. Gabbro is a main 

element of the Struma Diorite Complex while the kyanite schists are cropping out in the region of the village of 

Lebnitsa, Blagoevgrad district. We used gray-level co-occurrence matrices (GLCM) to quantitatively evaluate 

texture features and to determine which of them are best for mineral identification. Five texture features 

(angular second moment, contrast, correlation, inverse difference moment and entropy) were computed by the 

image processing and analysis program ImageJ and by the plugin GLCM Texture. Spectral signatures were 

obtained from optical reflectance measurement taken with a multichannel spectrometer in the region between 

480 and 810 nm. By means of the Student’s t-criterion and discriminant analysis statistically significant 

differences between the texture features of the main rock minerals were found for contrast and correlation in the 

case of gabbro and contrast and inverse difference moment for kyanite schist. For the spectral reflectance 

characteristics, t-criterion was applied in eight wavelengths disposed equidistantly over the spectral range 

investigated and statistically significant differences were established in seven of them for the two rocks 

examined. The results show that a combination of spectral and texture analysis may provide a robust method of 

discrimination with potential for application in real time.  

 

Introduction 
Techniques for the processing and interpretation of 

remotely sensed data have been widely used for various 

applications relating to surface and near surface environments 

(especially forest, crops, surface geological features, and 

oceans) [1, 2]. With the development of high techniques, 

large amounts of data are obtained by different types of 

sensors. Nowadays, an increasing quantity of multi-source 

remote sensing data acquired from many geographical areas is 

available. To investigate these data, there is a need to develop 

effective data processing techniques in order to take the 

advantage of such multi-source characteristics. In particular, 

in the context of classification problems, by combining more 

data features an improvement of accuracy could be achieved, 

which may be of important significance in real applications. 

In general, the spectral and texture information of multi-

source remote sensing plays an important role in the 

classification process [3-5].  

Image texture analysis is useful as a spectral image analysis 

tool because texture is independent of image tone. Texture 

can be defined as a variation of the pixel intensities in image 

sub-regions. The texture feature describes the attribution 

between a pixel and the other pixels around it. Texture 

features represent the spatial information of an image, which 

can be regarded as an important visual primitive to search 

visually similar patterns in the image [6]. The extraction of 

texture features from high resolution remote sensing imagery 

provides a complementary source of data for those 

applications in which the spectral information is not sufficient 

for identification or classification of spectrally heterogeneous 

landscape units [7].  

However, there is a wide range of texture analyses that are 

used with different criteria for feature extraction: statistical 

methods (grey level co-occurrence matrix - GLCM, 

semivariogram analysis); filter techniques (energy filters, 

Gabor filters), or the most recent techniques based on wavelet 

decomposition. The combination of parameters that optimize 

a method for a specific application should be decided when 

these techniques are used [8, 9]. 

Among all texture analysis methods, the Grey Level Co-

occurrence Matrix (GLCM) is one of the most widely used 

techniques in remote sensing and has been proven amongst 

the most powerful methods for many situations of texture 

classification [10]. The GLCM was first used by Julesz [11] 

and proposed by Haralick et al [12] as an approach to 

extracting textural features for image classification purposes. 

The method is based on the assumption that grey tones are 

spatially dependant (conditional joint probabilities) and that 

their dependency can be expressed through a co-occurrence 

matrix. Haralick et al [12] have therefore proposed a series of 

measurements taken from such matrices that relate to various 

aspects of texture (i.e. homogeneity, contrast, entropy, etc.).  

The texture is an important surface characteristic, which 

can be used to identify and recognize the main rock-forming 

minerals or components. The optical properties of rocks 

(spectral reflectance) depend on a complex interaction of 

factors including rock chemistry, modal composition, texture, 

and crystallinity [13]. 

The aim of the present paper is to assess the applicability of 

texture and spectral reflectance analysis as complementary 

tools for discrimination of the main rock-forming minerals 

using high resolution data and to evaluate which of the 

studied texture features are best for mineral identification. 

Materials and methods 

Petrographic characteristic of the rock specimens 
The specimen of amphibole gabbro, Fig. 1, is igneous basic 

intrusive rock. It is medium to coarse grained with massive 

texture. The investigated surface contains contrast by colour 

minerals - amphibole (dark green) and basic plagioclase 

(whitish - gray) in quantity relation approximately 2:1. The 
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mineral composition of the gabbro includes also, 

clinopyroxene, sphene, apatite and ore minerals. These rocks 

have widely occurrence on the territory of the Western 

Bulgaria and they are main element of the Struma Diorite 

Complex.  

The specimen of kyanite schist (metapellite), Fig. 2, is fine 

up to medium grained, greyish-brownish-reddish of colour, 

with a fine schistose structure. By origin, it is a regional 

metamorphic rock - an amphibolite’s facieses of 

metamorphism. It is build up of porphyroblasts of greyish 

blue kyanite and reddish brown garnet amid a fine grained 

crystalline mass of biotite, sericite and quartz. The texture of 

this rock specimen is lepidogranoblastic and porphyroblastic 

by kyanite and garnet. 

 

 

 
A large portion of the kyanite porphiroblasts is substituted 

by cryptocrystalline aggregates of sericite, which 

macroscopically is reflected by the change in colour - from 

grey-bluish to grey-whitish. The brown-reddish tint of the 

rock as a whole comes out of the abundant presence of biotite 

(brown red) and garnet (reddish brown). The rock exhibits a 

strong mineral linearity by the mineral kyanite. The kyanite 

schists are cropping out in the region of the village of 

Lebnitsa, Blagoevgrad district. The studied rocks are 

characteristic component of the Gneiss-migmatite Complex - 

Maleshevska Group (Ograzhden block, Vlahina block, and 

south-western part of the West Rila block). 

Texture evaluations 
The texture of the rock specimens was examined from the 

analysis of their digital images with high resolution. The 

images were taken with a digital camera CANON SX100IS 

with a CCD colour sensor containing about 8.3 Megapixels. 

The lens is a zoom-type 6-60 mm / f 2.8–4.3 optical system.  

We used the co-occurrence method introduced by Haralick 

[12]. Gray level co-occurrence matrix is a second order 

statistical tool useful to characterize texture features. It 

considers the contemporary occurrences of gray levels in 

corresponding displaced positions of the original image. 

GLCMs are typically computed for a number of different 

offsets unless a priori information is available about the 

underlying texture. 

By twenty areas of the images with different size of each 

one mineral group of the two rocks were separated. The co-

occurrence matrix of these regions was computed and texture 

analysis was performed by these matrices. Five of the most 

popular features: Angular Second Moment (ASM), Contrast, 

Correlation, Inverse Difference Moment (IDM) and Entropy 

were computed by the image processing and analysis program 

ImageJ [14] and by the plugin GLCM Texture [15] and 

analysed by statistical methods.  

The definitions of the GLCM texture features used as 

referenced in this research are given in Table I.  

TABLE I 

GLCM texture features 
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ASM measures homogeneity of the image, and with 

regularity of the texture it increases. Contrast (sum of squares 

variance) measures the local variations in the gray-level co-

occurrence matrix. Correlation measures the joint probability 

occurrence of the specified pixel pairs. Homogeneity IDM 

measures the closeness of the distribution of elements in the 

GLCM to the GLCM diagonal. Entropy measures the 

irregularity (variety) of the texture, and increases with variety. 

Spectral reflectance 
The spectral reflectance of the rocks was collected using a 

multichannel spectrometer [16] in the visible and near 

infrared ranges (480÷810 nm) of the spectrum in 128 

wavebands at a spectral resolution of 2.6 nm and a spatial 

resolution of 2 mm
2
 for the actual distance of 2.5 m between 

the specimens and the focal plane of the spectrometer.  

 
 
Fig. 1. Specimen of amphibole gabbro 

 

 
 

Fig. 2. Specimen of kyanite schist 



Fundamental Space Research 2009 

REMOTE SENSING 59 

The spectrometric measurements of each rock specimen 

were performed in contiguous areas (pixels) along a line on 

the surface preceded by records of dark current and of 

diffusely scattered radiation from the standard white screen. 

For determination of the spectral reflectance characteristic 

(SRC) the spectral data recorded undergo a subsequent 

treatment. It includes averaging of the spectra of each one 

pixel and of the standard screen data, and accounting for the 

dark current. For each average SRC the values of spectral 

reflectance (in relative units) at the 128 wavelengths were 

determined. 

Statistical methods 
To establish the statistical significance of the mean 

differences between texture features and SRC of different 

groups of minerals we applied discriminant analysis (DA) and 

Student’s t-criterion. The DA gives the option to discriminate 

between the texture features of the groups of minerals by 

juxtaposing a statistical probability to every one outcome 

obtained. The Student t-criterion was applied as well over the 

set of five texture features to establish the statistical 

significance of the mean differences. 

The t-criterion was applied also over the set of SRC of rock 

mineral components at eight wavelengths chosen to be 

disposed uniformly over the range including the green, red 

and the near infrared bands (�1 = 480 nm, �2 = 500.8 nm, �3 = 

550.2 nm, �4 = 599.6 nm, �5 = 649 nm, �6 = 701 nm, �7 = 

750.4 nm, and �8 = 779 nm). 

Results and Discussion 
Fig. 3 shows SRC of the investigated areas of the specimen 

gabbro. Two sub-classes were discriminated corresponding to 

the two main rock-forming minerals - amphibole (dark red) 

and basic plagioclase (blue). In Fig. 4 are shown four of the 

areas used for texture analysis of two mineral groups of 

gabbro: a) plagioclase (whitish gray) and b) amphibole (dark 

green), Fig. 1. Fig. 5 shows the SRC of the examined areas of 

the specimen kyanite schist. Two groups are clearly 

discriminated also corresponding to the rock-forming 

minerals - kyanite porphiroblasts (grey curves) and biotite and 

garnet (blue curves) [17].  

In Fig. 6 we show four areas used for texture analysis on 

surface  of  kyanite  schist:  a)  kyanite  porphiroblasts  (from  

 
grey-bluish to grey-whitish) and b) biotite and garnet 

(reddish brown). 

The results of the statistical data processing of the five 

texture features of the two main mineral groups containing 

the gabbro and kyanite schist through the linear discriminant 

analysis are set out in Table II, where pDA is the significance 

level of the null hypothesis. 

TABLE II 

Significance level p of the results obtained through DA model for the 

texture features  

Spaces of  

texture 

features 

gabbro 

 

pDA 

Spaces of 

texture 

features 

kyanite sc  

 

pDA 

1 0.92 1 0.618 

2 <0.000 2 <0.000 

3 <0.000 3 0.137 

4 0.989 4 <0.001 

5 0.287 5 0.464 

1/4 0.991 1/3 0.757 

1/5 0.011 1/5 0.757 

4/5 0.494 3/5 0.306 

1/4/5 0.010 1/3/5 0.51 

1 to/5 <0.000 1 to5 <0.000 

 

The results are statistically significant if p < 0.05. As it is 

seen, the main mineral components are distinguished 

significantly separately (one dimensional space) by the 
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Fig. 3. SRC of specimen amphibole gabbro 

 a  a  b  b  
 

Fig. 4. Areas of two main mineral groups of gabbro – 

plagioclase a) and amphibole b) 

 a  a  b  b 
 

Fig. 6. Areas of two main mineral groups kyanite schist:        

a) kyanite porphiroblasts  and b) biotite 



Fundamental Space Research 2009 

REMOTE SENSING 60

features contrast and correlation in the case of gabbro and 

contrast and IDM for kyanite schist. Satisfactory good 

classification of the main minerals of gabbro was obtained in 

the two and three dimensional spaces defined by the rest 

features (ASM, entropy) and (ASM, entropy, IDM).  

In Table II and Table III the numbers’ meaning is as 

follows: 1 - ASM; 2 – Contrast; 3 – Correlation; 4 – IDM; 5 – 

Entropy. 

The t-criterion was applied over the set of texture features 

(Table III). For kyanite schist no satisfactory discrimination 

was observed in the two dimensional spaces formed by ASM, 

entropy and correlation. 

In the five dimensional space formed by all texture features 

a full discrimination was observed. The t-criterion was 

applied over a set of the SRC of the mineral classes for two 

rock specimens. Statistically significant differences were 

revealed for spectral data for all investigated wavelengths 

with the exception of �4 for kyanite schist and �4 and �5 for 

gabbro. 

TABLE III 

Significance level p of the results obtained through t-criterion for the 

texture features  

 
Texture 

features 

pt 

gabbro 

pt  

kyan. schist 

1 0.919 0.516 

2 <0.000 <0.000 

3 <0.000 0.049 

4 0.985 <0.000 

5 0.287 0.334 

Conclusions 
The comparison between the results for the discriminative 

possibilities of texture features obtained through linear DA 

and Student t-criterion gives similar results. It was found that 

the contrast gives the best results in a single feature space. 

The results show that co-occurrence matrix approach is also 

an effective method for discrimination of the main rock-

forming minerals. The combination of spectral and texture 

analysis may provide a robust method of discrimination with 

potential for real time application.  

The spectral properties of magmatic and metamorphic 

rocks depend on a complex interaction of factors including 

the efects due to mineral grain size, arrangement and close 

packing, the spectral behavior of the intergranular materials in 

rocks and etc. Texture afects the spectral properties of the 

rocks in a still not fully understood way. The correlation of 

rock spectrometric parameters with different compositional 

variables can give insights into the magma-rock dynamic 

system evolution, not only providing information on the rock 

composition, but also on the geologic context of the rock 

formation. 
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