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In many studies the correlation coefficient is used to characterize the relationship between different time 

series. To bring out long-time relations, the time series are usually filtered by a moving average procedure.  

However, the time series are autocorrelated and by the average procedure the autocorrelation is increased in 

comparison with the correlation of the non-averaged series. This paper demonstrates the influence of the moving 

average on the correlation coefficient and the relation to the causality is discussed. It is concluded that in the 

case when as a consequence of the high autocorrelation the linear model is not adequate, it is under question 

whether there is any sense to specify the linear correlation coefficient. 

 

Introduction 
Many research papers on space physics, solar-earth 

interaction, helio physics, climate sciences and geophysics 

employ statistical methods as a result of the lack of concrete 

physical models to examine the relation between two 

variables. Therefore, the focus is on finding relations between 

different metric scaled variables using a correlation as a 

measure for the strength of the relationship of the variables 

and/or a regression analysis is applied to determine the 

direction of the relationship. However, in several papers the 

mathematical requirements connected with the application of 

the correlation and the regression analysis are not controlled. 

Some studies have shown linear relationships between the 

averaged quantities without giving any indication for the 

variability of the averaged quantities or at least for the 

number of data points that have been included into the 

averages [1]. What is more, in many cases relationships 

between different time series are studied, which are typically 

autocorrelated.  

In the first place, this paper reminds the conditions and the 

properties of the Pearson’s correlation and the linear 

regression, after which we demonstrate the influence of the 

averaging on the correlation on a sample of climate time 

series. 

Correlation and linear regression 
Basically, as a measure for the correlation, the Pearson 

product-moment correlation coefficient
1
 is used and is usually 

called a correlation coefficient. The two variables between the 

linear relations should be determined and should be randomly 

distributed. The Pearson product-moment correlation 

coefficient exists for any bivariate probability distribution for 

which the population covariance is defined and the marginal 

population variances are defined and are not zero. The t-test 

and the F-test can be applied to test the hypothesis whether it 

is a linear relationship between the variables X and Y or not, 

or the hypothesis about a hypothetical value of the correlation 

coefficient. Both tests are based on the assumption that the 

variables are normally distributed and both tests are sensitive 

to the deviations from the normal distribution. The normality 

                                                           

 

 
1
 It is also named Bravais-Pearson product-moment 

correlation coefficient. 

 

of the distributions of the samples X and Y can be examined, 

for example, by the help of the Chi-Squared, Kolmogorov-

Smirnov, Shapiro-Wilkins and the Lilliefors Goodness-of-Fit 

Tests (see [2] and the citations herein).  

The value of the correlation coefficient is in the interval from 

-1 up to +1, where for values smaller than zero the negative 

sign stands for anti-correlation and the values larger than zero 

denote a positive correlation. A correlation of zero does not 

mean that there isn’t a relationship between the variables. It 

only means that a linear correlation does not exist, however, 

the relation can be quadratic or it’s of other functional 

relations. For a very strong correlation, even for the absolute 

value of one, the relation is not necessarily of causality.  

Since the nature of the correlation coefficient makes it a 

measure for the linear correlation between two variables, it is 

closely connected with the linear regression analysis, where it 

not only gives the answer of the question whether the 

relationship is linear or not, but it also gives a linear relation 

between the two variables, the linear regression equation or, 

shortly, the regression. In the multivariate case of the mostly 

used type of regressions, considered here, the dependent 

variable Y (also called a regressant, or a predicted variable) 

should be continuous and with a normal distribution, but the 

distribution of the explanatory variables X (also called 

predictors, regressors or an independent variable) is not 

necessarily random. The predictors should be linearly 

independent and are assumed as error-free. In the climate 

science, the linear coefficients are also called forcing 

parameters. The error term YY ˆ−=ε , where Y is the vector 

of the observations and Ŷ  - the vector of the values,  

estimated by the linear model, has the distribution N ),0( σ , 

which means:    0)( =εE   and   2)( σε =Var  . The errors 

have to be uncorrelated, i.e. 0),( =
ji

Cov εε   for ji ≠  and 

have to be independent from the regressor X and the 

estimations, i.e. Ŷ  0),ˆ(),( == εε YCovXCov . The 

assumptions for normal distribution of the regressor and for 

the errors allow to estimate the confidence intervals of the 

regression coefficients and of the regressor prediction 

intervals as well as to prove some hypotheses, based on the 

Student, Fisher or ,
2
 test. The error variance of all 

observations must be constant, which means that they are 

homoscedastic, and can be tested by the Levene test, Barlett 

test, Cochran test or by the Fmax test. The correlation 

coefficient  
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)()(/),( YVarXVarYXCov=ρ            (1) 

is related to the slope b of the linear model by :  

   )(/)( XVarYVarb ρ= .          (2) 

It is easy to calculate the variance of the error term using 

the definition of the correlation coefficient and to obtain the 

formulae for the estimation of the correlation coefficient r   

)(

)ˆ(

YVar

YVar
r =

 .                                (3)  

With the last equation the coefficient of determination 2r  is 

defined as the ratio of the explained variance to the total 

variance, and describes which part of the total variance can be 

explained by the used regression. The last two equations 

demonstrate the close connection between the correlation and 

the bivariate linear regression. In the case of multivariate 

linear regression, the adjust coefficient of determination must 

be applied. 

Similarly to the correlation, a strong linear relationship 

does not implicate causal connections. High correlation can 

be spurious or nonsense. We speak about spurious or about 

illusory correlation or regression when a third variable 

influences the two correlated variables.  

Application of the regression method to time series 
Up to the present the understanding that the correlation is 

not influenced by changes over the time was implicit. This 

means that the data are in an equilibrium state.  This is 

especially important when the regression is used for the 

purpose of prognoses. The regression method is also 

applicable for analysis of time series. Here time series are 

series of a sequence of data points, very often equidistantly 

spaced in time. They are usually additively or multiplicatively 

separate in a trend, a cyclical and/or a seasonal component 

and an irregularly (noise) component. The trend, the cyclical 

as well as the seasonal component are sometimes combined 

with a smooth component. The trend of a time series can be 

analyzed by a linear regression as a simple polynomial 

function of a not very high degree p. Another method to 

determine the trend is based on moving averages, on wavelet 

decomposition of the series or on the application of specific 

filters in both, the time and the frequency space. By moving 

average the variance of the averaged time series 
t

y  in relation 

to the original series yt is decreased and in the case of central 

moving average it is determined by the weighting coefficients 

wi 

�
+

=

=
12

1

2
)()(

q

i
itt

wyVaryVar ,              (4) 

where 2q+1 is the odd number of averaged consecutive 

observations. 

- linear trend in a time series can also be separated by the 

determination of the first differences and of a polynomial of a 

higher degree and, consequently, by differences of higher 

orders. 

The cyclic and seasonal components can be determined by 

a harmonical analysis in the time sp�� or by spectral 

methods in the frequency domain. In many science disciplines 

the relationships between different time series often focus the 

interest in order to find connections between the variables. In 

the case of only one regressor or predictor, the dynamical 

linear regression equation can be written as 

ttt
XY εβα ++= .           (5) 

The Yt and Xt are now pairs of Y and X measured at a 

moment t. Equation (5) is the same as the equation of a 

simple linear regression. Naturally, the process is now not in 

equilibrium. Moreover, the regressor Y and the predictor X 

are typically autocorrelated. The autocorrelation function  

)(

),cov(
2

t

tt

t,
y

yy

σ
ρ τ

τ

−=             (6) 

is defined similarly to equation (1), only the index i for the 

sample pair [yi,xi] is replaced by the time index  t and t-τ , 

where τ  is  the  index   number  of  the time  series  yt  shifted  

to  itself.  Sometimes  the unnormalized  term cov(yt,yt-τ) is 

called autocovariance. The autocorrelation of Y and/or X is 

reflected on the autocorrelation of the error term and the 

assumption (5) is not valid. Now we will discuss the 

consequences of the autocorrelation, following the description 

in [3]: 

1. If the regression parameters are estimated by the ordinary 

least square method, the estimations of the parameters are 

unbiased (i.e. they are not changed due to the errors 

autocorrelation), however, the estimations are not 

efficient. This means that the estimated confidence 

intervals are influenced as a result of the autocorrelations. 

2.  If the error autocorrelation and the predictor 

autocorrelation are of the same order, the variance of the 

errors is biased. The sign of the differences between the 

estimated and the real value depends on the signs of the 

autocorrelations. Normally, the positive sign prevails. 

Then the estimation of the error variances is that they are 

too small and the determination coefficient and the F-

value are overestimated. The bias decreases with 

increasing the time series length. 

3. The calculation of the variance of the slope )ˆ(βVar , 

which is easy to be made from the difference of the real 

value β and its estimation β̂ , in the simple bivariate case 

gives �
=

−=
n

i

i
xxVar

1

2 )(/)ˆ( εσβ . Thus, the biased variance 

of the error term produces also a biased variance of the 

slope. In the case of an autoregression of the first order 

for the bivariate linear regression Hibbs [4] gives the 

approximation 

��
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where γ  and λ  are the regression coefficients of the 

autocorrelation series of the residual and the predictor series, 

respectively. The term in the brackets on the left side of the 

equation can be interpreted as a correction term describing the 
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Fig.1. Time series of the global mean annual temperature 

anomalies and some of the important temperature impact factors.  

Normal Probability Plot of the global mean annual temperature anomalies
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Fig. 2a. Normal probapility plot of the global mean annual 

temperature anomalies from 1865 up to 1993. 

Variable: annual global mean temperature anomalies,
Distribution: Normal

Kolmogorov-Smirnov d = 0.06204, p = n.s., Lilliefors p = n.s.

Chi-Square test = 4.15488, df = 4 (adjusted) , p = 0.38545
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Fig.2b. Histogram of the same time series as in Fig. 2a and 

the fitted normal distribution. Results of the statistical tests of 

the normal distribution.  

 

deviation of the variance, not taking into account the 

autocorrelation.  

The above discussion underlines the importance of the 

graphical inspection of the error term for the estimation of the 

stationarity of the error term and to see whether the error term 

contains a deterministic trend, (a remain of) a trade cycle 

and/or seasonal cycle and it answers the question for their 

autocorrelation. A very common test for autocorrelation of 

the error term is the Durbin-Watson test.  

Many studies involve the application of the moving 

average as a low pass filter of the time series and the 

determination of correlation coefficients is applied directly 

without detrending the series. Sometimes even the time series 

used to study the correlation are filtered in a different manner. 

The preceding detrending of the series is very important 

because the existing trends produce an inflation of the series 

correlation. If two series are strongly linearly time-correlated, 

the correlation between these series will be very high. 

However, this high correlation is not conclusive in regards to 

the causality of the processes. Conclusions for their causality 

can be drawn only in the case when the variabilities (of the 

de-trended series) are correlated with one another. In other 

words, with the classical regression method applied to the 

time series, it is possible to study only the correlation of the 

short-term variations of the series.  

Time series example – Data use 
Now we will demonstrate the influence of the averaging 

interval length of the moving average on the correlation with 

and without detrending the time series by the help of an 

example from the climate sciences. A basic parameter in the 

climate science is the global annual mean surface temperature 

(T) depending on the time. Here we will use the data set 

HADCRUT3 taken from the Met Office Hadley Centre for 

Climate Change. A download of the data set is to be found at:   

http://hadobs.metoffice.com/hadcrut3/diagnostics/global/nh+s

h/annual. In the climate sciences, the temperature series are 

often compared to the series which are related to physical 

measures driving the earth climate such as the solar sunspot 

number, the CO2 mixing ratio, the aerosol index and the 

South Oscillation index (SOI) 

((http://www.cru.uea.ac.uk/ftpdata/soi.dat), based on the 

difference between the Sea Level Pressure at Darwin and 

Tahiti (http://www.cru.uea.ac.uk/ftpdata/soi_dar.dat,  

http://www.cru.uea.ac.uk/ftpdata/soi_tah.dat), related to El 

Niño events. The sunspot number is an index describing the 

variation of the solar irradiance, one of the measures related 

to the solar activity. The increasing CO2 mixing ratio during 

the industrial period is one of the forcing factors of the global 

earth climate, by irradiation absorption of the earth in the 

infrared spectral range (greenhouse effect). A lot of aerosol 

particles are emitted as a result of the volcanic activities, 

which change the atmospheric absorption properties 

expressed by the optical depth. 

http://data.giss.nasa.gov/modelforce/strataer/tau_line.txt. The 

annual time series, the global temperature, the sunspot 

number, the CO2 concentration ratio µ  and the atmosphere 

optical depth tau and the SOI index are shown in Fig.1. The 

aerosol data and the CO2 concentration determined from the 

ice core drilling of Law dome are taken from the Historical 

data related to the global climate change, compiled by Wm. 

Robert Johnston (updated 25 March 2008) and are to be found 

at: 

http://www.johnstonsarchive.net/environment/co2table.html. 

Since the annual Law dome CO2 data span the time interval 

from 1850 up to 1978, additionally CO2 data is used from the 

measurements at Mauna Loa, covering the time span from 

1959 up to 2008: 

ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_mlo.txt  

The CO2 time series in Fig. 3. is the logarithm of the ratio 

0
/ µµ  with 

0
µ =280 ppmv, where 280 ppm is used as  a pre-
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industrial value. It is well known that CO2 does not force the 

global temperature linearly. The CO2  climate forcing term is 

described rather by the form of its logarithm which is a result 

of the saturation effect in the CO2 absorption bands [5].  

Analysis and Discussion 
The aerosol indices vary sporadically. The higher 

atmosphere aerosol content leads to reduction of the  

atmosphere transparence for the solar radiation, which causes 

a temperature decrease (or, a compensation effect of the 

temperature increase) at a time scale of some years. This is 

one of the reasons why the global temperature over the 

examined time interval does not show a clear Gaussian 

distribution over the whole interval from 1850 up to 2008, 

and another reason is probably the rising of the global 

temperature by external forcing. If we constrain on the time 

interval from 1865 up to 1993 (as explained below), and if we 

do not take into account the strong warming period during the 

last two decades, the normality can not be rejected for the 

global temperature distribution. Fig. 2 shows the normal 

probability plot for the same distribution and the results of 

different statistic tests are presented, using the statistic 

program STATISTICA 6.  We will determine the correlation 

coefficients for the bivariate relation of the global annual 

mean surface temperature and the sun spot numbers, on the 

one hand, and the CO2 concentration, on the other hand. The 

sun spot and the CO2 concentration are used here for their 

long time variations, which are studied in relation to the 

global, mean temperature in a multitude of scientific papers. 

Here at first the correlations are determined for the annual 

time series and then for the 11 year and also of the 31 year 

averaged time series as well as those of the linear detrended 

series. The averaging over 11 years is used to outline 

variations longer than the solar cycle variations [6,7,8]. The 

averaging over 30 (here for simplification 31) years is chosen 

to suppress variations shorter than the climatic epochs [9]. To 

compare the results using the same sample numbers in every 

series we constrain to the use of the time interval from 1865 

up to 1993 after providing the averaging procedures, to 

exclude edge effects.  

It is very important that the time series, included in the 

correlation and/or regression analysis are filtered in the same 

manner. It has been proven that the frequently cited finding of 

a strong correlation between the solar cycle length and the 

mean global temperature by Friis-Christensen, E., Lassen [10] 

is not correct and was produced by an implication of different 

filter techniques on the time series [11,12]. 

From the two time series for CO2 we have composed one 

general time series, where the Law dome values after 1978 

were predicted by the measured Mauna Loa CO2 

concentrations by the linear regression equation obtained by 

the values of the overlapping series part. Fig. 3 shows the 

original series of the global temperature anomalies, the sun 

spot numbers and the CO2 concentrations, the moving 

averaged series and the corresponding linear fits. Close to the 

linear trend lines, the determination coefficients of the time 

series and their linear fit are given. It is clearly seen that the 

absolute deviations of the series from their fits decrease by 

stronger averaging and the determination coefficients 

consequently increase. As a result of the averaging, however, 

the autocorrelation of the series also rises. For example, the 

autocorrelation coefficient to the lag 1 of the annual 

temperature series is 0.737 and is reduced to 0.651 by linear 

detrending. However, the autocorrelation coefficient at lag 1 

of the averaged time series of the global temperature exceeds 

the value of 0.96, it is also close to 1 and the autocorrelation 

function decreases very slowly, outlining the non-stationarity 

of the series (also in the case of the detrended temperature 

series). According to some authors, which „naively“ 

determine the correlation coefficients, we have determined 

the them and the  determination coefficients for the bivariate 

multivariate series with using the sunspot numbers and the 

CO2 forcing as predictors while the temperature is used as a 

predicted variable. The results for the annual time series, 

averaged with and without detrending, are summarized in 

Table 1.  The determination coefficient of the relation 

between the temperature and the sunspot numbers for the 

annual time series is very low and the slopes of the relations 

are not significant even in the case when the autocorrelation 

effects are neglected. This is in agreement with the well 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3. The original time series of the global mean annual 

temperature anomalies (on top), the sunspot numbers (in the 

middle), the logarithm of the CO2 concentrations (bottom) and 

their 11 year and 31 year moving average as well as their linear 

trends, respectively. 
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known fact that the direct impact of the 11 year solar cycle 

signal on the global climate is very weak. The global mean 

temperature variations at the time scale of some years are 

produced predominantly by the El Niño events expressed by 

the SOI index. The temperature variations are also influenced 

by the atmosphere aerosol and the sulfate concentration, by 

the concentrations of the green house gases other than CO2, 

methane for example, and probably by other climatic factors. 

Table 1 shows that the correlation coefficients strongly 

increase if the time series are averaged over longer time 

intervals and decrease in the multivariate case for the 

detrended time series. 

Conclusions 
Smaller correlation coefficients were obtained for the 

detrended time series than for the non-detrended ones. This 

leads to the conclusion that the high correlations are produced 

by the averaging procedures. This fact is confirmed by the 

analysis of the residuals of the time series and their linear 

model estimations. The residual series from the multivariate 

linear model T(SSN,CO2) for the 11 year averaged series is 

shown in Fig. 4 as an example. The residuals are far from 

random and are strongly non-stationary. The residual series 

are highly auto correlated. For the shown example, the 

estimated correlation coefficient r� = 0.967. The correlations 

for the predictors rSSN = 0.985 and rCO2 = 0.967. The Durbin-

Watson statistics gives the quantities dSSN=0.06 and 

dCO2=0.008. For the significance level of 0.95 the critical 

lower value d129,2,0.95  is 1.71. Therefore, d is much smaller 

than dL and the hypothesis that H0: .=0, which means that the 

series are not autocorrelated, has to be rejected.  These high 

autocorrelations generate very strong biased estimations of 

the slope variances. We have found for the correction terms in 

equation (14) values of the order of 20 up to 30 for the slope 

variance of the linear models for the averaged time series and 

the slopes either reach the limit of significance or are not 

significant. As a consequence, the linear models are not 

adequate and it is under question whether the specification of 

the correlation coefficients is justified. The models have to be 

changed to include predictors in order that the model is more 

adequate. If the residuals are random, their autocorrelation 

can be studied and the regression parameters and the 

confidence intervals can be estimated by the application of 

the Cochrane-Orcutt-method [13] or by the bootstrap method 

[13]. 
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Table.1.  

Correlation and determination coefficients 

 Correlation coefficients and determination 

coefficients between the global mean 

temperature anomalies and 

 the sunspot 

numbers 

(SSN) 

(bivariate) 

the CO2 

concentration 

(bivariate) 

the SSN and 

CO2 

(multivariate) 

 non 

detren

ded 

series 

lin. 

detren

ded 

series 

non 

detren

ded 

series 

lin. 

detren

ded 

series 

non 

detren

ded 

series 

lin. 

detren

ded 

series 

annual 

series 

0.135 

0.018 

0.056 

0.003 

0.558 

0.311 

0.227 

0.051 

0.559 

0.312 

0.229 

0.053 

11 year 

moving 

average 

0.729 

0.531 

0.381 

0.145 

0.842 

0.708 

0.556 

0.309 

0.887 

0.750 

0.690 

0.477 

31 year 

moving 

average 

0.855 

0.732 

0.475 

0.226 

0.927 

0.859 

0.704 

0.496 

0.947 

0.897 

0.887 

0.787 

 


