Geomagnetic effects on cosmic ray propagation under different conditions for Malargüe city, Argentina

J. J. Masías-Meza 1,2 , X. Bertou 1 and S. $\mathsf{Dasso}^{2,3}$

 ¹Centro Atómico Bariloche (CNEA-CONICET), U.N. de Cuyo, Bariloche, Rio Negro, Argentina
² Departamento de Física (FCEN-UBA), Buenos Aires, Argentina masiasmj@df.uba.ar
³Instituto de Astronomía y Física del Espacio (UBA-CONICET)

October 2012

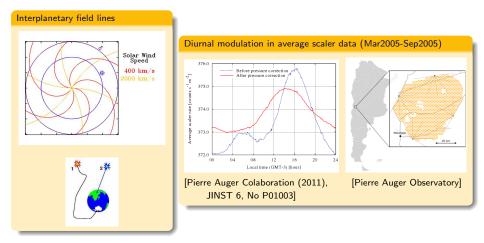
《口》 《聞》 《臣》 《臣》

Roadmap

- Anisotropy in CRs
- Bgeo Models
- Rigidity cutoff

- Geomagnetic effects in calm periods
- Geomagnetic effects in storm periods

- 4 伺 ト 4 ヨ ト 4 ヨ ト


ROADMAP

• Anisotropy in CRs

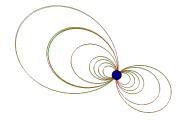
- Bgeo Models
- Rigidity cutoff

- Geomagnetic effects in calm periods
- Geomagnetic effects in storm periods

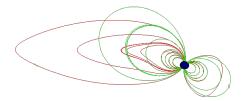
Anisotropy in cosmic ray (CR) flux direction:

SOC

◆ロト ◆聞ト ◆国ト ◆国ト


ROADMAP OBgeo Models

ROADMAP


- Anisotropy in CRs
- Bgeo Models
- Rigidity cutoff

- Geomagnetic effects in calm periods
- Geomagnetic effects in storm periods

B_{geo} Models

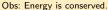
Centered Dipole (green) and IGRF Model (red).

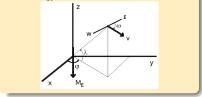
Centered Dipole (green) and Tsyganenko Model "TSY01" (red).

SAC

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ROADMAP

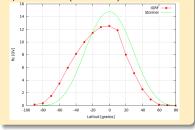

- Anisotropy in CRs
- Bgeo Models
- Rigidity cutoff


- Geomagnetic effects in calm periods
- Geomagnetic effects in storm periods

Definitions and equations

Rigidity : $R = mvc/q \rightarrow [GV]$ Equation of motion:

$$m\frac{d\mathbf{v}}{dt} = \frac{q}{c}\mathbf{v}\times\mathbf{B} \tag{1}$$



Rigidity cutoff

Rigidity cutoff for a dipole:

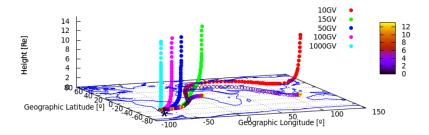
$$R_c(\lambda,\omega) = rac{59,2cos^4\lambda}{(1+\sqrt{1-cos\omega cos^3\lambda})^2} GV$$

Latitud dependence of Rc in a dipole and an empirical model (IGRF 2010):

◆ロト ◆聞ト ◆国ト ◆国ト

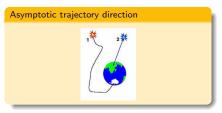
SAC

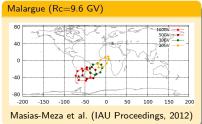
ROADMAP CONSTRUCTION Geomagnetic effects in calm periods

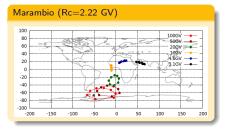

ROADMAP

- Anisotropy in CRs
- Bgeo Models
- Rigidity cutoff

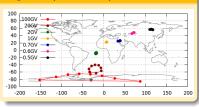
- Geomagnetic effects in calm periods
- Geomagnetic effects in storm periods


Proton trajectories inside the magnetosphere:

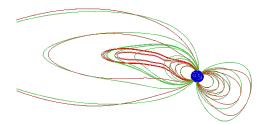

- Color bar represents the height in Earth radius units (Re).
- zenith = 0° .



Sar

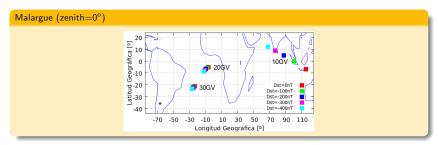

Asymptotic Directions for zenith=15° (projected on Earth surface): Obs: These directions do not change along the day.

イロト イポト イヨト イヨト


Sar

ROADMAP CONSTRUCTION Geomagnetic effects in storm periods

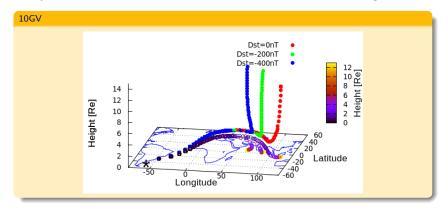
ROADMAP


- Anisotropy in CRs
- Bgeo Models
- Rigidity cutoff

- Geomagnetic effects in calm periods
- Geomagnetic effects in storm periods

Bgeo geometry using IGRF+TSY01 with Dst=0nT (green) and Dst=-250nT (red). From Masias-Meza et al. (IAU Proceedings, 2012)

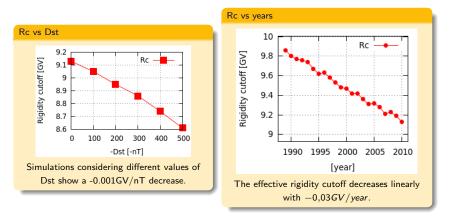
Asymptotic directions for different storm conditions:


Azimutal shift in hours from detector position:

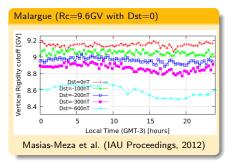
$\delta \phi^{Mlg}[hrs]$	0nT	-100 nT	-200 nT	-300 nT	-400 nT
10 GV	12.33	11.32	10.48	9.77	9.16
15 GV	5.39	5.18	4.99	4.81	4.64
20 GV	4.19	4.08	3.98	3.88	3.79
30 GV	3.03	2.97	2.92	2.86	2.81

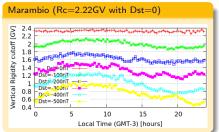
Sar

◆ロト ◆聞ト ◆国ト ◆国ト


Trajectories under different storm conditions for Malargue:

Sar


◆ロト ◆聞ト ◆国ト ◆国ト


Rc trends using IGRF + TSY01 (at Malargue):

Sac

Vertical rigidity cutoff (Rc with zenith=0°) along the day in storm conditions:

Geomagnetic effects on cosmic ray propagation under different conditions for Malargüe city, Argentina Sar

SUMMARY:

• We determined the cut-off rigidity (Rc) for different incidence directions, using trajectories at the site of the Pierre Auger Observatory.

- We determined the variation of R_c along a day for different geomagnetic storm conditions.
- The secular variation rate of R_c^{Mlg} was found to be -0.03 GV/year.
- The variation rate of R_c^{Mlg} with Dst was found to be -0.001GV/nT.
- All these results can be used to interpret cosmic ray modulation using Auger data for calm and storm periods.

Thanks!