Solar electrons in the Heliosphere

Dalmiro Jorge Filipe Maia

CICGE, Centro de Investigação em Ciências Geo-espaciais
Faculdade de Ciências da Universidade do Porto, Portugal

Particles in the heliosphere

In situ particle observations can be attributed to a series of particle populations, whose relative importance and local characteristics vary widely from solar maximum to solar minimum. Energetic particle populations in the inner heliosphere include:

Particles in the heliosphere

In situ particle observations can be attributed to a series of particle populations, whose relative importance and local characteristics vary widely from solar maximum to solar minimum. Energetic particle populations in the inner heliosphere include:

1. Galactic cosmic Rays (GCRs) originated in the interstellar medium and able to penetrate into the heliosphere.

Particles in the heliosphere

In situ particle observations can be attributed to a series of particle populations, whose relative importance and local characteristics vary widely from solar maximum to solar minimum. Energetic particle populations in the inner heliosphere include:

1. Galactic cosmic Rays (GCRs)
2. Anomalous cosmic rays (ACRs), that originate as interstellar neutral atoms traveling into the heliosphere, ionized by solar UV and carried out as pickup ions in the solar wind to be finally accelerated to energies as high as $100 \mathrm{MeV} /$ nucleon presumably close to the solar wind termination shock or in the heliosheath.

Particles in the heliosphere

In situ particle observations can be attributed to a series of particle populations, whose relative importance and local characteristics vary widely from solar maximum to solar minimum. Energetic particle populations in the inner heliosphere include:

1. Galactic cosmic Rays (GCRs)
2. Anomalous cosmic rays (ACRs)
3. Solar energetic particles (SEPs) that originate near the Sun in association with intense solar flares and large coronal mass ejections (CMEs). Occasionally, SEP events are observed at very high energies reaching GeV for protons and 100 MeV for electrons.

Particles in the heliosphere

In situ particle observations can be attributed to a series of particle populations, whose relative importance and local characteristics vary widely from solar maximum to solar minimum. Energetic particle populations in the inner heliosphere include:

1. Galactic cosmic Rays (GCRs)
2. Anomalous cosmic rays (ACRs)
3. Solar energetic particles (SEPs)
4. Energetic particles accelerated by other shocks and disturbances in the solar wind such as shocks formed in the solar wind stream interaction regions (SIRs) or corotating interaction regions (CIRs).

Particles in the heliosphere

In situ particle observations can be attributed to a series of particle populations, whose relative importance and local characteristics vary widely from solar maximum to solar minimum. Energetic particle populations in the inner heliosphere include:

1. Galactic cosmic Rays (GCRs)
2. Anomalous cosmic rays (ACRs)
3. Solar energetic particles (SEPs)
4. Particles accelerated by SIRs or CIRs
5. Energetic particles accelerated in planetary magnetospheres, such as Jovian electrons observed in the inner heliosphere at energies from a few hundred keV to less than about 30 MeV .

Particles in the heliosphere

In situ particle observations can be attributed to a series of particle populations, whose relative importance and local characteristics vary widely from solar maximum to solar minimum. Energetic particle populations in the inner heliosphere include:

1. Galactic cosmic Rays (GCRs)
2. Anomalous cosmic rays (ACRs)
3. Solar energetic particles (SEPs)
4. Particles accelerated by SIRs or CIRs
5. Energetic particles accelerated in planetary magnetospheres.

The study of these particle populations at different latitudes and under different heliospheric conditions provides information about:

- the global structure of the heliosphere during solar minimum and solar maximum conditions
- the mechanisms of particle propagation in the heliosphere - properties of solar source regions (charge states, composition). Energetic particles given insight both on the heliosphere and on processes back at Sun.

Particle studies combine three aspects: origin/acceleration, propagation, detection.

The study of these particle populations at different latitudes and under different heliospheric conditions provides information about:

- the global structure of the heliosphere during solar minimum and solar maximum conditions
- the mechanisms of particle propagation in the heliosphere
- properties of solar source regions (charge states, composition).

Energetic particles given insight both on the heliosphere and on processes back at Sun.

Particle studies combine three aspects: origin/acceleration, propagation, detection.

The study of these particle populations at different latitudes and under different heliospheric conditions provides information about:

- the global structure of the heliosphere during solar minimum and solar maximum conditions
- the mechanisms of particle propagation in the heliosphere
- properties of solar source regions (charge states, composition).

Energetic particles given insight both on the heliosphere and on processes back at Sun.

Particle studies combine three aspects: origin/acceleration, propagation, detection

The study of these particle populations at different latitudes and under different heliospheric conditions provides information about:

- the global structure of the heliosphere during solar minimum and solar maximum conditions
- the mechanisms of particle propagation in the heliosphere
- properties of solar source regions (charge states, composition).

Energetic particles given insight both on the heliosphere and on processes back at Sun.

Particle studies combine three aspects: origin/acceleration, propagation, detection.

The study of these particle populations at different latitudes and under different heliospheric conditions provides information about:

- the global structure of the heliosphere during solar minimum and solar maximum conditions
- the mechanisms of particle propagation in the heliosphere
- properties of solar source regions (charge states, composition).

Energetic particles given insight both on the heliosphere and on processes

 back at Sun.The study of these particle populations at different latitudes and under different heliospheric conditions provides information about:

- the global structure of the heliosphere during solar minimum and solar maximum conditions
- the mechanisms of particle propagation in the heliosphere
- properties of solar source regions (charge states, composition).

Energetic particles given insight both on the heliosphere and on processes back at Sun.

Particle studies combine three aspects: origin/acceleration, propagation, detection.

The intensities of all particle populations which propagate through the heliosphere are affected by

- variations in the level of solar activity,
- the characteristics of the solar wind,
- the properties of the interplanetary magnetic field

Changes in these properties result in

- short-term and long-term modulations of GCRs and ACRs,
- variations in latitudinal and radial gradients of particle intensities,
- and changes in the energy spectra and composition of the heliospheric energetic particle population.

The intensities of all particle populations which propagate through the heliosphere are affected by

- variations in the level of solar activity,
- the characteristics of the solar wind,
- the properties of the interplanetary magnetic field Changes in these properties result in
- short-term and long-term modulations of GCRs and ACRs,
- variations in latitudinal and radial gradients of particle intensities,
- and changes in the energy spectra and composition of the heliospheric energetic particle population.

The intensities of all particle populations which propagate through the heliosphere are affected by

- variations in the level of solar activity,
- the characteristics of the solar wind,
- the properties of the interplanetary magnetic field
- short-term and long-term modulations of GCRs and ACRs,
- variations in latitudinal and racial gradients or particle intensities.
- and changes in the energy spectra and composition of the heliospheric energetic particle population.

The intensities of all particle populations which propagate through the heliosphere are affected by

- variations in the level of solar activity,
- the characteristics of the solar wind,
- the properties of the interplanetary magnetic field

Changes in these properties result in

- short-term and long-term modulations of GCRs and ACRs,
- variations in Iatitudinal and radial gradients of particle intensities,
- and changes in the energy spectra and composition of the heliospheric energetic particle population.

The intensities of all particle populations which propagate through the heliosphere are affected by

- variations in the level of solar activity,
- the characteristics of the solar wind,
- the properties of the interplanetary magnetic field

Changes in these properties result in

- short-term and long-term modulations of GCRs and ACRs,
- variations in latitudinal and radial gradients of particle intensities,
- and changes in the energy spectra and composition of the heliospheric energetic particle population.

The intensities of all particle populations which propagate through the heliosphere are affected by

- variations in the level of solar activity,
- the characteristics of the solar wind,
- the properties of the interplanetary magnetic field

Changes in these properties result in

- short-term and long-term modulations of GCRs and ACRs,
- variations in latitudinal and radial gradients of particle intensities,
- and changes in the energy spectra and composition of the heliospheric energetic particle population.

The intensities of all particle populations which propagate through the heliosphere are affected by

- variations in the level of solar activity,
- the characteristics of the solar wind,
- the properties of the interplanetary magnetic field

Changes in these properties result in

- short-term and long-term modulations of GCRs and ACRs,
- variations in latitudinal and radial gradients of particle intensities,
- and changes in the energy spectra and composition of the heliospheric energetic particle population.

The intensities of all particle populations which propagate through the heliosphere are affected by

- variations in the level of solar activity,
- the characteristics of the solar wind,
- the properties of the interplanetary magnetic field

Changes in these properties result in

- short-term and long-term modulations of GCRs and ACRs,
- variations in latitudinal and radial gradients of particle intensities,
- and changes in the energy spectra and composition of the heliospheric energetic particle population.

This lecture will deal with SEP electrons.

The intensities of all particle populations which propagate through the heliosphere are affected by

- variations in the level of solar activity,
- the characteristics of the solar wind,
- the properties of the interplanetary magnetic field

Changes in these properties result in

- short-term and long-term modulations of GCRs and ACRs,
- variations in latitudinal and radial gradients of particle intensities,
- and changes in the energy spectra and composition of the heliospheric energetic particle population.

This lecture will deal with SEP electrons.

Solar electrons in the heliosphere - Outline

- The structure of the heliospheric magnetic field
- Electron propagation
- A ${ }^{\text {arabatic focusing }}$
- Pitch angle scattering
- In situ electrons observed near the Earth
- Inversion of observed electron profiles
- In-situ and hard x-rays
- The electron "delay" problem: type III bursts flares and CMEs
- Prospects

Solar electrons in the heliosphere - Outline

- The structure of the heliospheric magnetic field
- Electron propagation
- Aciabatic rocusing
- Pitch angle scattering
- In situ electrons observed near the Earth
- Inversion of observed electron profiles
- In-situ and hard x-rays
- The electron "delay" problem: type III bursts flares and CMEs
- Prospects

Solar electrons in the heliosphere - Outline

- The structure of the heliospheric magnetic field
- Electron propagation
- Adiabatic focusing
- Pitch angle scattering
- In situ electrons observed near the Earth
- Inversion of observed electron profiles
- In situ and hard x -rave
- The electron "delay" problem: type III bursts flares and CMEs
- Prospects

Solar electrons in the heliosphere - Outline

- The structure of the heliospheric magnetic field
- Electron propagation

- Adiabatic focusing

- Pitch angle scattering
- In situ electrons observed near the Earth
- Inversion of observed electron profiles
- Th-situ and hard x -tays
- The electron "delay" problem: type III bursts flares and CMEs
- Prospects

Solar electrons in the heliosphere - Outline

- The structure of the heliospheric magnetic field
- Electron propagation
- Adiabatic focusing
- Pitch angle scattering
- In situ electrons observed near the Earth
- Inversion of observed electron profiles
- Th-situ and hard x --uys
- The electron "delay" problem: type III bursts flares and CMEs
- Prospects

Solar electrons in the heliosphere - Outline

- The structure of the heliospheric magnetic field
- Electron propagation
- Adiabatic focusing
- Pitch angle scattering
- In situ electrons observed near the Earth
- Inversion of observed electron profiles
- In-situ and hard x-rays
- The electron "delay" problem: type III bursts flares and CMEs
- Prospects

Solar electrons in the heliosphere - Outline

- The structure of the heliospheric magnetic field
- Electron propagation
- Adiabatic focusing
- Pitch angle scattering
- In situ electrons observed near the Earth
- Inversion of observed electron profiles
- In-situ and hard x-rays
- The electron "delay" problem: type III bursts flares and CMEs
- Prospects

Solar electrons in the heliosphere - Outline

- The structure of the heliospheric magnetic field
- Electron propagation
- Adiabatic focusing
- Pitch angle scattering
- In situ electrons observed near the Earth
- Inversion of observed electron profiles
- In-situ and hard x-rays
- The electron "delay" problem: type III bursts flares and CMEs
- Prospects

Solar electrons in the heliosphere - Outline

- The structure of the heliospheric magnetic field
- Electron propagation
- Adiabatic focusing
- Pitch angle scattering
- In situ electrons observed near the Earth
- Inversion of observed electron profiles
- In-situ and hard x-rays
- The electron "delay" problem: type III bursts flares and CMEs
- Prospects

Solar electrons in the heliosphere - Outline

- The structure of the heliospheric magnetic field
- Electron propagation
- Adiabatic focusing
- Pitch angle scattering
- In situ electrons observed near the Earth
- Inversion of observed electron profiles
- In-situ and hard x-rays
- The electron "delay" problem: type III bursts flares and CMEs
- Prospects

Electrons from the Sun will propagate in the interplanetary magnetic field.
In the absence of large-scale disturbances like CMEs and shocks, the interplanetary magnetic field can be described as a smooth average field due to the steady solar wind flow.

The magnetic field in the solar wind is "frozen" in the plasma, and is carried by the solar wind flow.

The Sun rotates, so althongh the wind flowing from a given region in the corona propagates radially, the solar wind will have a spiral structure.

- solar wind source initially at west limb (view from above)
- slow wind ($400 \mathrm{~km} / \mathrm{s}$)
- radial flow in the ecliptic plane

Electrons from the Sun will propagate in the interplanetary magnetic field.
In the absence of large-scale disturbances like CMEs and shocks, the interplanetary magnetic field can be described as a smooth average field due to the steady solar wind flow.

The magnetic field in the solar wind is "frozen" in the plasma, and is carried by the solar wind flow.

The Sun rotates, so although the wind flowing from a given region in the corona propagates radially, the solar wind will have a spiral structure.

Example:

- solar wind source initially at west limb (view from above)
- slow wind $(400 \mathrm{~km} / \mathrm{s})$
- radial flow in the ecliptic plane

Electrons from the Sun will propagate in the interplanetary magnetic field.
In the absence of large-scale disturbances like CMEs and shocks, the interplanetary magnetic field can be described as a smooth average field due to the steady solar wind flow.

The magnetic field in the solar wind is "frozen" in the plasma, and is carried by the solar wind flow.

The Sun rotates, so although the wind flowing from a given region in the corona propagates radially, the solar wind will have a spiral structure.

- solar wind source initially at west limb (view from above)
- slow wind ($400 \mathrm{~km} / \mathrm{s}$)
- radial flow in the ecliptic plane

Electrons from the Sun will propagate in the interplanetary magnetic field.
In the absence of large-scale disturbances like CMEs and shocks, the interplanetary magnetic field can be described as a smooth average field due to the steady solar wind flow.

The magnetic field in the solar wind is "frozen" in the plasma, and is carried by the solar wind flow.

The Sun rotates, so although the wind flowing from a given region in the corona propagates radially, the solar wind will have a spiral structure.

- solar wind source initially at west limb (view from above)
- slow wind $(400 \mathrm{~km} / \mathrm{s})$
- radial flow in the ecliptic plane

Electrons from the Sun will propagate in the interplanetary magnetic field.
In the absence of large-scale disturbances like CMEs and shocks, the interplanetary magnetic field can be described as a smooth average field due to the steady solar wind flow.

The magnetic field in the solar wind is "frozen" in the plasma, and is carried by the solar wind flow.

The Sun rotates, so although the wind flowing from a given region in the corona propagates radially, the solar wind will have a spiral structure.

Example:

. Alow wan ammp

- radial flow in the ecliptic plane

Electrons from the Sun will propagate in the interplanetary magnetic field.
In the absence of large-scale disturbances like CMEs and shocks, the interplanetary magnetic field can be described as a smooth average field due to the steady solar wind flow.

The magnetic field in the solar wind is "frozen" in the plasma, and is carried by the solar wind flow.

The Sun rotates, so although the wind flowing from a given region in the corona propagates radially, the solar wind will have a spiral structure.

Example:

- solar wind source initially at west limb (view from above)
- slow wind ($400 \mathrm{~km} / \mathrm{s}$)
- radial flow in the ecliptic plane

Electrons from the Sun will propagate in the interplanetary magnetic field.
In the absence of large-scale disturbances like CMEs and shocks, the interplanetary magnetic field can be described as a smooth average field due to the steady solar wind flow.

The magnetic field in the solar wind is "frozen" in the plasma, and is carried by the solar wind flow.

The Sun rotates, so although the wind flowing from a given region in the corona propagates radially, the solar wind will have a spiral structure.

Example:

- solar wind source initially at west limb (view from above)
- slow wind ($400 \mathrm{~km} / \mathrm{s}$)
- radial flow in the ecliptic plane

Electrons from the Sun will propagate in the interplanetary magnetic field.
In the absence of large-scale disturbances like CMEs and shocks, the interplanetary magnetic field can be described as a smooth average field due to the steady solar wind flow.

The magnetic field in the solar wind is "frozen" in the plasma, and is carried by the solar wind flow.

The Sun rotates, so although the wind flowing from a given region in the corona propagates radially, the solar wind will have a spiral structure.

Example:

- solar wind source initially at west limb (view from above)
- slow wind ($400 \mathrm{~km} / \mathrm{s}$)
- radial flow in the ecliptic plane

Mars orbit

Up to Mercury's orbit

the interplanetary mag-

netic field is nearly radial

The typical spiral length near Earth is $\approx 1.2 \mathrm{AU}$.

Particles in the ecliptic plane need to travel huge distances to reach radial distances of a few AU from the Sun center.

Fast wind from coronal holes, complicates this picture: around the Earth orbit the fast wind catches the slow wind.

Up to Mercury's orbit the interplanetary mag-

netic field is nearly radial.

The typical spiral length near Earth is $\approx 1.2 \mathrm{AU}$.

Particles in the ecliptic plane need to travel huge distances to reach radial distances of a few AU from the Sun center.

Fast wind from coronal holes, complicates this picture: around the Earth orbit the fast wind catches the slow wind.

Up to Mercury's orbit the interplanetary magnetic field is nearly radial.

The typical spiral length near Earth is $\approx 1.2 \mathrm{AU}$.

Particles in the ecliptic nlane need to travel hooe distances to reach radial distances of a few AU from the Sun center.

Fast wind from coronal holes comnlicates
picture: around the Earth orbit the fast wind catches the slow wind

Up to Mercury's orbit the interplanetary magnetic field is nearly radial.

The typical spiral length near Earth is $\approx 1.2 \mathrm{AU}$.

Particles in the ecliptic plane need to travel huge distances to reach radial distances of a few AU from the Sun center.

Fast wind from coronal holes, complicates this picture: around the Earth orbit the fast wind catches the slow wind

Up to Mercury's orbit the interplanetary magnetic field is nearly radial.

The typical spiral length near Earth is $\approx 1.2 \mathrm{AU}$.

Particles in the ecliptic plane need to travel huge distances to reach radial distances of a few AU from the Sun center.

Fast wind from coronal holes, complicates this picture: around the Earth orbit the fast wind catches the slow wind.

gray - $400 \mathrm{~km} / \mathrm{s}$ solar wind

red - $700 \mathrm{~km} / \mathrm{s}$ solar wind

gray - $400 \mathrm{~km} / \mathrm{s}$ solar wind
red - $700 \mathrm{~km} / \mathrm{s}$ solar wind

gray - $400 \mathrm{~km} / \mathrm{s}$ solar wind
red - $700 \mathrm{~km} / \mathrm{s}$ solar wind

When the fast wind "catches" the slow wind a corating interaction region (CIR) will develop, bound by a pair of reverse and forward shocks.

CIRs, iCMEs and iCME-associated shocks, and other features in the solar wind affect article propagation (GCR modulation).

In wat rollows I win consider only the ideal situation: large scale spiral magnetic field, with small scale irregularities. The real picture is much more complicated.

I will consider only also particle with energies high enough so that solar wind speed effects in their propagation can be ignored, particle speed is constant (no adiabatic deceleration).

When the fast wind "catches" the slow wind a corating interaction region (CIR) will develop, bound by a pair of reverse and forward shocks.

CIRs, iCMEs and iCME-associated shocks, and other features in the solar wind affect article propagation (GCR modulation).

In what follows I will consider only the ideal situation: large scale spiral magnetic field, with small scale irregularities. The real picture is much more complicated.

I will consider only also particle with energies high enough so that solar wind speed effects in their propagation can be ignored, particle speed is constant (no adiabatic deceleration).

When the fast wind "catches" the slow wind a corating interaction region (CIR) will develop, bound by a pair of reverse and forward shocks.

CIRs, iCMEs and iCME-associated shocks, and other features in the solar wind affect article propagation (GCR modulation).

In what follows I will consider only the ideal situation: large scale spiral magnetic field, with small scale irregularities. The real picture is much more complicated.

I will consider only also particle with energies high enough so that solar wind speed effects in their propagation can be ignored, particle speed is
constant (no adiabatic deceleration).

When the fast wind "catches" the slow wind a corating interaction region (CIR) will develop, bound by a pair of reverse and forward shocks.

CIRs, iCMEs and iCME-associated shocks, and other features in the solar wind affect article propagation (GCR modulation).

In what follows I will consider only the ideal situation: large scale spiral magnetic field, with small scale irregularities. The real picture is much more complicated.

I will consider only also particle with energies high enough so that solar wind speed effects in their propagation can be ignored, particle speed is constant (no adiabatic deceleration).

With no solar wind effects included, particle propagation is based on the model of focused transport illustrated by the equation (Roelof, 1969)

- z is the coordinate of the observer along the magnetic field line, μ is the cosine of pitch angle. t the time. v is the particle velocity
- $f=f(z,, t)$ particles phase space density
- $L(z)$ is the rocusing length ofthe field
- v pitch angle diffusion coefficient
- $Q(2,, i)$ is the source function.

With no solar wind effects included, particle propagation is based on the model of focused transport illustrated by the equation (Roelof, 1969)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

- z is the coordinate of the observer along the magnetic field line, μ is the cosine of pitch angle, t the time, v is the particle velocity
- $f=f(z,, t)$ particles phase space density
- $L(z)$ is the focusing length of the field
- ypitch angle cimusion coemerent
- $Q(z, t)$ is the source function.

With no solar wind effects included, particle propagation is based on the model of focused transport illustrated by the equation (Roelof, 1969)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

- z is the coordinate of the observer along the magnetic field line, μ is the cosine of pitch angle, t the time, v is the particle velocity
- $f=f(z, t)$ particles phase space density
- $L(z)$ is the focusing length of the field
- vitch ancle diffucion coefficient
- $Q(z,, t)$ is the source function.

With no solar wind effects included, particle propagation is based on the model of focused transport illustrated by the equation (Roelof, 1969)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

- z is the coordinate of the observer along the magnetic field line, μ is the cosine of pitch angle, t the time, v is the particle velocity
- $f=f(z, t)$ particles phase space density
- $L(z)$ is the focusing length of the field
- v pitch angle diffusion coefficient
- $Q(z, t)$ is the source function.

With no solar wind effects included, particle propagation is based on the model of focused transport illustrated by the equation (Roelof, 1969)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

- z is the coordinate of the observer along the magnetic field line, μ is the cosine of pitch angle, t the time, v is the particle velocity
- $f=f(z, t)$ particles phase space density
- $L(z)$ is the focusing length of the field
- v pitch angle diffusion coefficient
- $Q\left(z_{2}, t\right)$ is the source function.

With no solar wind effects included, particle propagation is based on the model of focused transport illustrated by the equation (Roelof, 1969)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

- z is the coordinate of the observer along the magnetic field line, μ is the cosine of pitch angle, t the time, v is the particle velocity
- $f=f(z, t)$ particles phase space density
- $L(z)$ is the focusing length of the field
- v pitch angle diffusion coefficient
- $Q(z, t)$ is the source function.

With no solar wind effects included, particle propagation is based on the model of focused transport illustrated by the equation (Roelof, 1969)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

- z is the coordinate of the observer along the magnetic field line, μ is the cosine of pitch angle, t the time, v is the particle velocity
- $f=f(z, t)$ particles phase space density
- $L(z)$ is the focusing length of the field
- v pitch angle diffusion coefficient
- $Q(z, t)$ is the source function.

With no solar wind effects included, particle propagation is based on the model of focused transport illustrated by the equation (Roelof, 1969)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

- z is the coordinate of the observer along the magnetic field line, μ is the cosine of pitch angle, t the time, v is the particle velocity
- $f=f(z, t)$ particles phase space density
- $L(z)$ is the focusing length of the field
- v pitch angle diffusion coefficient
- $Q(z, t)$ is the source function.

References:

With no solar wind effects included, particle propagation is based on the model of focused transport illustrated by the equation (Roelof, 1969)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

- z is the coordinate of the observer along the magnetic field line, μ is the cosine of pitch angle, t the time, v is the particle velocity
- $f=f(z, t)$ particles phase space density
- $L(z)$ is the focusing length of the field
- v pitch angle diffusion coefficient
- $Q(z, t)$ is the source function.

References: Ruffolo (1991). ApJ 382:688-698. Ruffolo (1995). ApJ 442:861-874.

With no solar wind effects included, particle propagation is based on the model of focused transport illustrated by the equation (Roelof, 1969)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

- z is the coordinate of the observer along the magnetic field line, μ is the cosine of pitch angle, t the time, v is the particle velocity
- $f=f(z, t)$ particles phase space density
- $L(z)$ is the focusing length of the field
- v pitch angle diffusion coefficient
- $Q(z, t)$ is the source function.

References: Ruffolo (1991). ApJ 382:688-698. Ruffolo (1995). ApJ 442:861-874. Kocharov et al (1998). Solar Physics 182:192:215

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

The equation includes terms describing the streaming of particles along the field lines, and terms describing the change of the particles' pitch angles.

$I(\tau)=(1 / R)(a R)\left(\lambda_{7}\right)$ the focusing lenoth in the diverging maonetic field R

characterizes the systematic forces caused by magnetic mirroring.
Conservation of a particle's first adiabatic invariant
leads to an increase of μ as the particle propagates away from the Sun.
(In what follows I define $\mu>0$ to he outward from the Sun.)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

The equation includes terms describing the streaming of particles along the field lines, and terms describing the change of the particles' pitch angles.
$L(z)=(1 / B)(\partial B)(\partial z)$, the focusing length in the diverging magnetic field B,
characterizes the systematic forces caused by magnetic mirroring.
Conservation of a particle's first adiabatic invariant
leads to an increase of μ as the particle propagates away from the Sun.
(Th what follows I define $\mu>0$ to be outward from the Sum.)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

The equation includes terms describing the streaming of particles along the field lines, and terms describing the change of the particles' pitch angles.
$L(z)=(1 / B)(\partial B)(\partial z)$, the focusing length in the diverging magnetic field B, characterizes the systematic forces caused by magnetic mirroring.

Conservation of a particle's first adiabatic invariant
leads to an increase of μ as the particle propagates away from the Sun.
(In what follows I cenne $\mu>0$ to be outward from the Sun.)

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

The equation includes terms describing the streaming of particles along the field lines, and terms describing the change of the particles' pitch angles.
$L(z)=(1 / B)(\partial B)(\partial z)$, the focusing length in the diverging magnetic field B, characterizes the systematic forces caused by magnetic mirroring.

Conservation of a particle's first adiabatic invariant

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

The equation includes terms describing the streaming of particles along the field lines, and terms describing the change of the particles' pitch angles.
$L(z)=(1 / B)(\partial B)(\partial z)$, the focusing length in the diverging magnetic field B, characterizes the systematic forces caused by magnetic mirroring.

Conservation of a particle's first adiabatic invariant

$$
\left(1-\mu^{2}\right) / B(r)
$$

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

The equation includes terms describing the streaming of particles along the field lines, and terms describing the change of the particles' pitch angles.
$L(z)=(1 / B)(\partial B)(\partial z)$, the focusing length in the diverging magnetic field B, characterizes the systematic forces caused by magnetic mirroring.

Conservation of a particle's first adiabatic invariant

$$
\left(1-\mu^{2}\right) / B(r)
$$

leads to an increase of μ as the particle propagates away from the Sun.

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

The equation includes terms describing the streaming of particles along the field lines, and terms describing the change of the particles' pitch angles.
$L(z)=(1 / B)(\partial B)(\partial z)$, the focusing length in the diverging magnetic field B, characterizes the systematic forces caused by magnetic mirroring.

Conservation of a particle's first adiabatic invariant

$$
\left(1-\mu^{2}\right) / B(r)
$$

leads to an increase of μ as the particle propagates away from the Sun.
(In what follows I define $\mu>0$ to be outward from the Sun.)

Adiabatic focusing: aligning the particles

- 100 keV electron released from 3 Rs
- outwand motion initiol $\mu \sim 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- marnetic field intencity varyine ac R^{-2}

Adiabatic focusing: aligning the particles
Example:

- 100 keV electron released from 3 Rs
- outward motion, initial $\mu \approx 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic focusing: aligning the particles
Example:

- 100 keV electron released from 3 Rs
- outward motion, initial $\mu \approx 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic focusing: aligning the particles

Example:

- 100 keV electron released from 3 Rs
- outward motion, initial $\mu \approx 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic focusing: aligning the particles
Example:

- 100 keV electron released from 3 Rs
- outward motion, initial $\mu \approx 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic focusing: aligning the particles
Example:

- 100 keV electron released from 3 Rs
- outward motion, initial $\mu \approx 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic focusing: aligning the particles

Magnetic field line

Adiabatic focusing: aligning the particles

- 100 keV electron released from 10 Rs
- outwand motion initiol $\ldots \sim 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- marnetic field intencity varying as R^{-2}

Adiabatic focusing: aligning the particles
Example:

- 100 keV electron released from 10 Rs
- outward motion, initial $\mu \approx 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic focusing: aligning the particles
Example:

- 100 keV electron released from 10 Rs
- outward motion, initial $\mu \approx 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic focusing: aligning the particles
Example:

- 100 keV electron released from 10 Rs
- outward motion, initial $\mu \approx 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic focusing: aligning the particles
Example:

- 100 keV electron released from 10 Rs
- outward motion, initial $\mu \approx 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic focusing: aligning the particles
Example:

- 100 keV electron released from 10 Rs
- outward motion, initial $\mu \approx 0.1$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic focusing: aligning the particles

What about particles propagating towards the Sun?

- 100 keV electron released from Venus orbit
- outward motion, initial $\mu \approx-0.95$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

What about particles propagating towards the Sun?
Example:

- 100 keV electron released from Venus orbit
- outward motion, initial $\mu \approx-0.95$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

What about particles propagating towards the Sun?
Example:

- 100 keV electron released from Venus orbit
- outward motion, initial $\mu \approx-0.95$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

What about particles propagating towards the Sun?
Example:

- 100 keV electron released from Venus orbit
- outward motion, initial $\mu \approx-0.95$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

What about particles propagating towards the Sun?
Example:

- 100 keV electron released from Venus orbit
- outward motion, initial $\mu \approx-0.95$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

What about particles propagating towards the Sun?
Example:

- 100 keV electron released from Venus orbit
- outward motion, initial $\mu \approx-0.95$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}

Adiabatic defocusing: mirroring the particles

Problem

Consider $B \propto R^{-2}$
consider a particle at Venus with $\mu=-0.95$
at what distance will it sent hack?
what is the minimum $|\mu|$ for a particle, sent from Mars towards the Sun, to reach the orbit of Mercury?

Orhit of Mercury: 38700821 AU. Orbit of Mars: 1.52366231 AU.

Problem

Consider $B \propto R^{-2}$
consider a particle at Venus with $\mu=-0.95$
at what distance will it sent back?
what is the minimum | μ | for a particle, sent from Mars towards the Sun, to reach the orbit of Mercury?

Orbit of Mercury: . 38709821 AU. Orbit of Mars: 1.52366231 AU.

Problem

Consider $B \propto R^{-2}$
consider a particle at Venus with $\mu=-0.95$
at what distance will it sent back?
what is the minimum $|\mu|$ for a particle, sent from Mars towards the Sun, to reach the orbit of Mercury?

Orbit of Mercury: . 38709821 AU. Orbit of Mars: 1.52366231 AU.

Problem

Consider $B \propto R^{-2}$
consider a particle at Venus with $\mu=-0.95$
at what distance will it sent back?
what is the minimum $|\mu|$ for a particle, sent from Mars towards the Sun, to reach the orbit of Mercury?

Orbit of Mercury: 38709821 AU. Orbit of Mars: 1.52366231 AU.

Problem
Consider $B \propto R^{-2}$
consider a particle at Venus with $\mu=-0.95$
at what distance will it sent back?
what is the minimum $|\mu|$ for a particle, sent from Mars towards the Sun, to reach the orbit of Mercury?

Orbit of Mercury: . 38709821 AU. Orbit of Mars: 1.52366231 AU.

Problem

Consider $B \propto R^{-2}$
consider a particle at Venus with $\mu=-0.95$
at what distance will it sent back?
what is the minimum $|\mu|$ for a particle, sent from Mars towards the Sun, to reach the orbit of Mercury?

Orbit of Mercury: . 38709821 AU. Orbit of Mars: 1.52366231 AU.

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

Particles are subject to small-angle scatterings off magnetic turbulence.
Kinetic approach (Kocharov 1998), parametrized by a mean free path λ, isotropic scattering, scattering centers frozen in the solar wind.

- a time step is chosen such that the particle only travels a very small fraction if λ
- anter each time step the position of the particle and its pitch angle are updated using only the effects of adiabatic focusing
- Particles v and μ are then changed into solar wind frame of reference and scatter is added by performing small rotations in the particle velocity vector following Kocharov (1998), assuming constant radial mean free path).
- Thon \cdot and $\cdot \boldsymbol{\mu}$ arc transformed back and the process is repeated.

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

Particles are subject to small-angle scatterings off magnetic turbulence.
Kinetic approach (Kocharov 1998), parametrized by a mean free path λ, isotropic scattering, scattering centers frozen in the solar wind.

- a time sten is chosen such that the particle only travels a very small fraction if λ
- after each time step the position of the particle and its pitch angle are updated using only the effects of adiabatic focusing
- Particles v and μ are then changed into solar wind frame of reference and scatter is added by performing small rotations in the particle velocity vector following Kocharov (1998), assuming constant radial mean free path).
- Then v and μ are transformed back and the process is repeated.

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

Particles are subject to small-angle scatterings off magnetic turbulence.
Kinetic approach (Kocharov 1998), parametrized by a mean free path λ, isotropic scattering, scattering centers frozen in the solar wind.
a time step is chosen such that the particle only travels a very small fraction if λ

- after each time step the position of the particle and its pitch angle are updated using only the effects of adiabatic focusing
- Particles v and μ are then changed into solar wind frame of reference and scatter is added by performing small rotations in the particle velocity vector following Kocharov (1998), assuming constant radial mean free path).
- Then v and μ are transformed back and the process is repeated.

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

Particles are subject to small-angle scatterings off magnetic turbulence.
Kinetic approach (Kocharov 1998), parametrized by a mean free path λ, isotropic scattering, scattering centers frozen in the solar wind.

- a time step is chosen such that the particle only travels a very small fraction if λ
- after each time step the position of the particle and its pitch angle are updated using only the effects of adiabatic focusing ence and scatter is added by performing small rotations in the particle velocity vector following Kocharov (1998), assuming constant radial mean free path).
- Then v and μ are transformed back and the process is repeated.

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

Particles are subject to small-angle scatterings off magnetic turbulence.
Kinetic approach (Kocharov 1998), parametrized by a mean free path λ, isotropic scattering, scattering centers frozen in the solar wind.

- a time step is chosen such that the particle only travels a very small fraction if λ
- after each time step the position of the particle and its pitch angle are updated using only the effects of adiabatic focusing
\qquad velocity vector following Kocharov (1998), assuming constant radial
- Then v and μ are transformed back and the process is repeated.

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

Particles are subject to small-angle scatterings off magnetic turbulence.
Kinetic approach (Kocharov 1998), parametrized by a mean free path λ, isotropic scattering, scattering centers frozen in the solar wind.

- a time step is chosen such that the particle only travels a very small fraction if λ
- after each time step the position of the particle and its pitch angle are updated using only the effects of adiabatic focusing
- Particles v and μ are then changed into solar wind frame of reference and scatter is added by performing small rotations in the particle velocity vector following Kocharov (1998), assuming constant radial mean free path).

$$
\frac{\partial f}{\partial t}+\mu v \frac{\partial f}{\partial z} f+\frac{1-\mu^{2}}{2 L} v \frac{\partial f}{\partial \mu}-\frac{\partial}{\partial \mu}\left(D_{\mu \mu}(\mu) \frac{\partial f}{\partial \mu}\right)=Q(z, \mu, t)
$$

Particles are subject to small-angle scatterings off magnetic turbulence.
Kinetic approach (Kocharov 1998), parametrized by a mean free path λ, isotropic scattering, scattering centers frozen in the solar wind.

- a time step is chosen such that the particle only travels a very small fraction if λ
- after each time step the position of the particle and its pitch angle are updated using only the effects of adiabatic focusing
- Particles v and μ are then changed into solar wind frame of reference and scatter is added by performing small rotations in the particle velocity vector following Kocharov (1998), assuming constant radial mean free path).
- Then v and μ are transformed back and the process is repeated.

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in]0,1[
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in]0,1[
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.5 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in]0,1[
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.5 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in]0,1[
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.5 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.5 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.5 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.5 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.5 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in]0,1[
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in]0,1[
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.1 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.05 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in]0,1[
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.05 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in]0,1[
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.05 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.05 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.05 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.05 \mathrm{AU}$

Focused transport with scattering.
Example:

- 50 electrons, with 100 keV , released from 3 Rs in ecliptic plane
- outward motion, initial μ uniform in $] 0,1[$
- spiral magnetic field (solar wind $400 \mathrm{~km} / \mathrm{s}$)
- magnetic field intensity varying as R^{-2}
- constant mean free path $\lambda=0.05 \mathrm{AU}$

Individual particles "lose their memory", one has to use statistical properties, like total flux and total anisotropy as a function of time to reconstruct the history of a particle event back at the Sun:

Individual particles "lose their memory", one has to use statistical properties, like total flux and total anisotropy as a function of time to reconstruct the history of a particle event back at the Sun:

Individual particles "lose their memory", one has to use statistical properties, like total flux and total anisotropy as a function of time to reconstruct the history of a particle event back at the Sun:

Individual particles "lose their memory", one has to use statistical properties, like total flux and total anisotropy as a function of time to reconstruct the history of a particle event back at the Sun:

Individual particles "lose their memory", one has to use statistical properties, like total flux and total anisotropy as a function of time to reconstruct the history of a particle event back at the Sun:

Individual particles "lose their memory", one has to use statistical properties, like total flux and total anisotropy as a function of time to reconstruct the history of a particle event back at the Sun:

Electron telescopes measure the particle energy, $E(R, t)$ and the particle pitch angle (if magnetometer data are available). From these it is possible to build the directional flux, $F(\mu, t ; R, E)$ and, depending on the instrument, it is also possible to recover the total flux:

Other important quantities are the total anisotropy:

And the average anisotropy:

Electron telescopes measure the particle energy, $E(R, t)$ and the particle pitch angle (if magnetometer data are available). From these it is possible to build the directional flux, $F(\mu, t ; R, E)$ and, depending on the instrument, it is also possible to recover the total flux:

$$
I(t ; R, E)=\frac{1}{2} \int_{-1}^{1} F(\mu, t ; R, E) d \mu
$$

Other important quantities are the total anisotropy:

And the average anisotropy:
$a(t ; R, E)=A(t ; R, E) / I(t ; R, E)$

Electron telescopes measure the particle energy, $E(R, t)$ and the particle pitch angle (if magnetometer data are available). From these it is possible to build the directional flux, $F(\mu, t ; R, E)$ and, depending on the instrument, it is also possible to recover the total flux:

$$
I(t ; R, E)=\frac{1}{2} \int_{-1}^{1} F(\mu, t ; R, E) d \mu
$$

Other important quantities are the total anisotropy:

And de a exereg a aisoropey:
$a(t ; R, E)=A(t ; R, E) / I(t ; R, E)$

Electron telescopes measure the particle energy, $E(R, t)$ and the particle pitch angle (if magnetometer data are available). From these it is possible to build the directional flux, $F(\mu, t ; R, E)$ and, depending on the instrument, it is also possible to recover the total flux:

$$
I(t ; R, E)=\frac{1}{2} \int_{-1}^{1} F(\mu, t ; R, E) d \mu
$$

Other important quantities are the total anisotropy:

$$
A(t ; R, E)=<\mu F(\mu, t ; R, E)>_{\mu}=\frac{1}{2} \int_{-1}^{1} \mu F(\mu, t ; R, E) d \mu
$$

And the average anisotropy:
$a^{\prime}(t ; n, E)=A(t ; R, E) / I(t ; R, E)$

Electron telescopes measure the particle energy, $E(R, t)$ and the particle pitch angle (if magnetometer data are available). From these it is possible to build the directional flux, $F(\mu, t ; R, E)$ and, depending on the instrument, it is also possible to recover the total flux:

$$
I(t ; R, E)=\frac{1}{2} \int_{-1}^{1} F(\mu, t ; R, E) d \mu
$$

Other important quantities are the total anisotropy:

$$
A(t ; R, E)=<\mu F(\mu, t ; R, E)>_{\mu}=\frac{1}{2} \int_{-1}^{1} \mu F(\mu, t ; R, E) d \mu
$$

And the average anisotropy:
$a(t ; R, E)=A(t ; R, E) / I(t ; R, E)$

Electron telescopes measure the particle energy, $E(R, t)$ and the particle pitch angle (if magnetometer data are available). From these it is possible to build the directional flux, $F(\mu, t ; R, E)$ and, depending on the instrument, it is also possible to recover the total flux:

$$
I(t ; R, E)=\frac{1}{2} \int_{-1}^{1} F(\mu, t ; R, E) d \mu
$$

Other important quantities are the total anisotropy:

$$
A(t ; R, E)=<\mu F(\mu, t ; R, E)>_{\mu}=\frac{1}{2} \int_{-1}^{1} \mu F(\mu, t ; R, E) d \mu
$$

And the average anisotropy:

$$
a(t ; R, E)=A(t ; R, E) / I(t ; R, E)
$$

200 keV electrons from EPAM/ACE. Long duration event, with anisotropic onset. Slow rise and long duration could be related to long-lasting injection at the Sun. Particles from anti-sunward direction at the onset suggest the reason is very strong scattering.

200 keV electrons from EPAM/ACE. Average pitch angle (anisotropy).

Modeling propagation effects

Kinetic treatment: 1 million particles generated randomly. Solar wind effects included, adiabatic focusing and isotropic scatter (mean free path does not depend on the pitch angle).
for each λ the injection function is determined (deconvolution not a fit)
for each the average anisotropy is computed using the injection function above
for each lambda the sum of the quadratic difference between observed and model anisotropies is computed.

Modeling propagation effects

Kinetic treatment: 1 million particles generated randomly. Solar wind effects included, adiabatic focusing and isotropic scatter (mean free path does not depend on the pitch angle).
for each λ the injection function is determined (deconvolution not a fit) for each the average anisotropy is computed using the injection function above
for each lambda the sum of the quadratic difference between observed and model anisotropies is computed.

Modeling propagation effects
Kinetic treatment: 1 million particles generated randomly. Solar wind effects included, adiabatic focusing and isotropic scatter (mean free path does not depend on the pitch angle).
for each λ the injection function is determined (deconvolution not a fit)
for each the average anisotropy is computed using the injection function above
for each lambda the sum of the quadratic difference between observed and model anisotropies is computed.

Modeling propagation effects
Kinetic treatment: 1 million particles generated randomly. Solar wind effects included, adiabatic focusing and isotropic scatter (mean free path does not depend on the pitch angle).
for each λ the injection function is determined (deconvolution not a fit)
for each the average anisotropy is computed using the injection function above
for each lambda the sum of the quadratic difference between observed and model anisotropies is computed.

Modeling propagation effects
Kinetic treatment: 1 million particles generated randomly. Solar wind effects included, adiabatic focusing and isotropic scatter (mean free path does not depend on the pitch angle).
for each λ the injection function is determined (deconvolution not a fit)
for each the average anisotropy is computed using the injection function above
for each lambda the sum of the quadratic difference between observed and model anisotropies is computed.

Data are enough to chose between the different models.
Mean free path is $\approx 0.045 \mathrm{AU}$.

Injection function peaks and drops relatively fast. It coincides with remote observations of gyro-synchrotron emissions. Ref: Maia et al (2007). ApJ 660:874-881.

