Coordinated, optical, radio, and magnetic investigations of wave dynamics in the daytime upper atmosphere

Deepak K. Karan¹, Duggirala Pallamraju¹, Kedar A. Phadke¹, T. Vijaya Lakshmi²

¹ Physical Research Laboratory, Navrangpura, Ahmedabad, India
² Jawaharalal Nehru Technological University, Hyderabad, India

Email: deepak@prl.res.in

भौतिक अनुसंधान प्रयोगशाला Physical Research Laboratory

Introduction

- Various processes occurring in the upper atmosphere are affected by electrodynamical and neutral wave dynamics.
- Lower equatorial upper atmospheric regions are highly dynamically coupled.
- Optical method of investigation is one of the effective means to study the neutral dynamical behaviour of the upper atmosphere
- To investigate the daytime neutral behaviour, optical dayglow emissions (Oxygen 557.7 nm, 630.0 nm and 777.4 nm) from a low-latitude station (Hyderabad, India, 17.36^o N, 78.4^o E, MLAT = 9^o N) have been used for this study.

Commissioning of MISE

* JNTU, Hyderbad

(17°N, 80°E; 8.7°N Mag. Lat) PRL's optical aeronomy observatory

Initially, MISE was commissioned with its slit oriented along the magnetic meridian (N-S).

Installation of dome in east-west direction

- Later, the slit alignment was changed to East-West direction
- At present data collection is continuing in continuous mode

MISE: A view from inside the laboratory

Top side view of dome with hood

Production mechanism of the emissions

577.7 nm

Production of O(1S)

 $O + e_{ph} \rightarrow O(^{1}S) + e^{-}$ $O_{2} + h\nu \rightarrow O(^{1}S) + O$ $O_{2}^{+} + e_{th} \rightarrow O(^{1}S) + O$ $O + O + M \rightarrow O(^{1}S) + O + M$

Loss of $O({}^{1}S)$ $O({}^{1}S) \rightarrow O({}^{1}D) + h\nu (557.7nm)$ $O({}^{1}S) + N_{2}/O_{2} \rightarrow O({}^{3}P) + N_{2}/O_{2}$

630.0 nm

 $\begin{array}{l} \textit{Production ofO(^{1}D)} \\ 0 + e_{ph} \to O(^{1}D) + e^{-} \\ 0_{2} + h\nu \to O(^{1}D) + 0 \\ 0_{2}^{-+} + e_{th} \to O(^{1}D) + 0 \\ O(^{1}S) \to O(^{1}D) + h\nu \ (557.7nm) \end{array}$

Loss of $O(^{1}D)$ $O(^{1}D) \rightarrow O(^{3}P) + h\nu (630.0 nm)$ $O(^{1}D) + N_{2}/O_{2} \rightarrow O(^{3}P) + N_{2}/O_{2}$

777.4 nm

Production of O(⁵P) $O^+ + e \rightarrow O(^{5}P)$

Loss of $O(^{5}P)$ $O(^{5}P) \rightarrow O(^{5}S) + h\nu (777.4 nm)$ Altitudes of emission (Approx)

OI 557.7 : ~130 km OI 630.0 : ~230 km OI 777.4 : ~300 km

Pallamraju et al., 2013, JASTP

Line strength=Normalized Depth X Half Width

Diurnal variations of dayglow intensity

Different combination of days showing symmetric and asymmetric behaviour both in 630.0 nm and 557.7 nm

Local time (in hrs)

Intensity (in arb. units,

- During low-solar activity epoch 2010 2013, such "asymmetric" behaviour in emission intensities was not seen.
- However, asymmetric behaviour was seen during high solar activity epochs of 2001 and 2014.

- The 'asymmetric' behaviour in emissions is due to:
- neutral dynamics
- Electrodynamics
- or both !

Periodogram analysis of dayglow intensities at both 630.0 nm and 557.7 nm and EEJ carried out

Gravity wave analyses

Days showing asymmetric behaviour

MISE has a large FOV

Schematic of the view directions for all the three dayglow emissions measured is shown above.

Scale size spectral analysis of dayglow intensities at both 630.0 nm and 557.7 nm

Summary

- Daytime neutral atmospheric optical emissions at different altitudes show different diurnal behaviour that varies from day to day.
- Time periods in both emissions as well as EEJ don't show any significant variation in the symmetric and asymmetric days.
- Further, the zonal scale-sizes show varying behavior in the forenoon vs. afternoon during days with symmetric/ asymmetric behavior.

Thank you...