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NONADDITIVE ENTROPIES:  

FROM EINSTEIN TO SPACE WEATHER 
 

 



Enrico FERMI              Thermodynamics (Dover, 1936)  
 
The entropy of a system composed of several parts is very 
often equal to the sum of the entropies of all the parts. This 
is true if the energy of the system is the sum of the energies 
of all the parts and if the work performed by the system 
during a transformation is equal to the sum of the amounts 
of work performed by all the parts. Notice that these 
conditions are not quite obvious and that in some cases 
they may not be fulfilled. Thus, for example, in the case of a 
system composed of two homogeneous substances, it will 
be possible to express the energy as the sum of the 
energies of the two substances only if we can neglect the 
surface energy of the two substances where they are in 
contact. The surface energy can generally be neglected 
only if the two substances are not very finely subdivided; 
otherwise, it can play a considerable role.  



ENTROPIC FORMS 

Concave   

Extensive  

Lesche-stable 

Finite entropy production     
per unit time 

Pesin-like identity (with  
largest entropy production) 

Composable 

Topsoe-factorizable (unique) 

Amari-Ohara-Matsuzoe 
conformally invariant  
geometry (unique) 

Biro-Barnafoldi-Van 
thermostat universal 
independence (unique)           

ENTROPIC FUNCTIONALS 

nonadditive (if 1)q ≠

additive

Entropy Sq 
   (q real) 

BG entropy 

    (q =1) 

Possible generalization of 
Boltzmann-Gibbs statistical mechanics 
C.T., J Stat Phys 52, 479 (1988) 
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Hence the entropies can be rewritten

equal probabilities generic probabilities
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The relation between S and W given in Eq. (1) is the only reasonable given the 
proposition that the entropy of a system consisting of subsystems is equal to the 
sum of entropies of the subsystems. 
                                                                       (Free translation by Tobias Micklitz) 

Annalen der Physik 33 (1910) 



BOLTZMANN-GIBBS ENTROPY IS SUFFICIENT BUT NOT NECESSARY 
FOR THE LIKELIHOOD FACTORIZATION REQUIRED BY EINSTEIN 

C. T. and H.J. Haubold (2014), 1407.6052 [cond-mat.stat-mech] 

Einstein 1910 (reversal of Boltzmann formula): 
            For any two independent systems A and B, 
            the likelihood function should satisfy
   
                              Ω(A + B) = Ω(A) Ω(B)  (Einstein principle)

q = 1:       SBG = kB lnW      hence     Ω pi{ }( )∝ eSBG pi{ }( )/kB     hence 
Ω(A + B)∝ eSBG (A+B)/kB = eSBG (A)/kB+SBG (B)/kB = eSBG (A)/kBeSBG (B)/kB ∝Ω(A) Ω(B) 
                                                                                                                   OK!

∀q :           Sq = kB lnqW      hence     Ω pi{ }( )∝ eq
Sq pi{ }( )/kB     hence 

Ω(A + B)∝ eq
Sq (A+B)/kB = eq

Sq (A)/kB+Sq (B)/kB+(1−q)[Sq (A)/kB ][Sq (B)/kB ]

                                    = eq
Sq (A)/kBeq

Sq (B)/kB ∝Ω(A) Ω(B)                 OK  ∀q !















1501.02459 [cond-mat.stat-mech] 

Particle confinement in magnetic traps, particle dynamics in accelerators, 
comet dynamics, ionization of Rydberg atoms, electron magneto-transport 

pi+1 = pi − K sin xi
xi+1 = xi + pi+1          (i = 0,1,2,...)
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  WHAT DO WE GAIN FROM KNOWING THE VALUES OF q? 
 
- We now know how to calculate specific heats, equations of states, magnetic      
  and electric susceptibilities, … and all the thermostatistical jazz! 
 
 
- We now know how quickly neighboring initial conditions get apart with time. 
 
      
- We now know what physical mechanisms are possible: 
 
     Long-range-interacting many-body classical Hamiltonians (e.g., generalized  
           Fermi-Pasta-Ulam system); 
     Subsystem of strongly quantum-entangled systems (e.g., part of a  
           transverse-field Ising model at zero temperature critical point); 
     Many-body systems with strongly dissipative mechanisms (e.g., overdamped  
           motion of repulsively interacting vortices in type II superconductors); 
     Dissipative maps at the edge of chaos (e.g., the logistic map at the  
           Feigenbaum point);        
     Conservative maps whose maximal Lyapunov exponent is nearly zero  
           (e.g., standard map). 
 



LHC (Large Hadron Collider) 
CMS (Compact Muon Solenoid) detector  

~ 2500 scientists/engineers from 183 institutions of 38 countries 





(q = 1+1/n) 



L.J.L. Cirto, C. T., C.Y. Wong and G. Wilk, 1409.3278 [hep-ph]  
 

SIMPLE APROACH: TWO-DIMENSIONAL RELATIVISTIC FREE PARTICLE 
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Einstein (1905)
E = (m2c4 + p2c4)1/2

Newton
E = mc2 + p2/2m
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