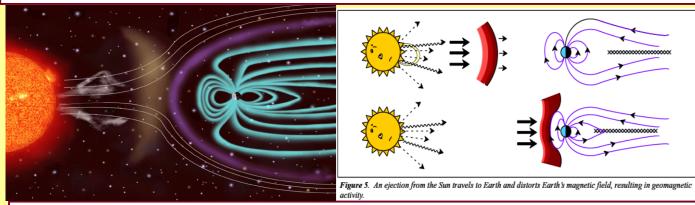
Installation of the Flare Monitoring Telescope in Saudi Arabia as a New Member of CHAIN Project (Continuous H-alpha Imaging Network Project)

Ahmed Ibrahim, Ayman Kordi, A. Elmhamdi, Hussein Trabelsi, Mohammed Nawawy and Mohamed Abdel Asabour

UNITED NATIONS/JAPAN WORKSHOP ON SPACE WEATHER


March 2015, Fukuoka, Japa

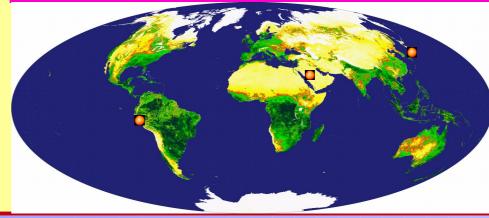
Abstract

In 2011 we invited Prof. Kazunari Shibata (Kyoto University; Japan) and have discussed the possibility for our institute to become a member of the CHAIN project leaded by him and his group. We launched, later, a project to install the Flare Monitoring Telescope (FMT) in our department and hence establish a new solar research group (consisting of 6 faculty members). During 2012 our University agreed to provide the needed financial support. In the autumn of 2014, our FMT will be installed (replacing an already existed night telescope). Joining the world wide FMT network with Japan and Peru by our new telescope will surely enable us to implement the continuous H-alpha full-sun observation. Our FMT has a unique feature as it can obtain two red-shift solar images at Halpha + 0.8 Å and H-alpha + 1.6 Å and two blue-shift images at H-alpha - 0.8 Å and H-alpha - 1.6 Å. On one hand, we can estimate the velocity of very fast ejections of solar plasma by mainly using blue-shift images, on the other hand, we can observe falling plasma down to the photosphere using red-shift images. Our new solar research group at KSU will promote studies on sudden disturbances and long-term variations of the space weather environment through cooperative solar observations with Japan and Peru.

1. What is the "CHAIN" ?

The space-weather environment around the earth depends on 3-D structures and velocities of the Coronal Mass Ejection (CME), Shockwave and solar-wind disturbance around the magnetosphere.

It is highly important that we could accurately observe filament eruptions and structures of shock waves on the Sun, in order to accurately grasp and predict the structures, velocities and evolution of the CIMEs and shock waves in the solar-terrestrial space


	Observational & Scientific Themes of CHAIN Project (Continuous H-alpha Imaging Network Project)					
	 (1) 3D velocity field measurement of eruptive phenomena on the solar surface (2) Detection of shock waves (Moreton 	Purposes of CHAIN Project (Continuous H- alpha Imaging Network Project)				
		Reinforcement of multi-wavelength H-alpha observations of the full-disk Sun by formation of an international network of ground-based solar station				
al	wave) generated by solar explosive phenomena	Capacity building: International spread, academic exchange and promotion of the space-weather research				

However, it is still difficult to predict whether solar active phenomena would have large geoeffectiveness or not, just when the solar phenomena occur on the solar surface

Observations of filament eruptions and shock waves with the mutli-wavelength full-disk solar telescope play a crucial role for the space weather research.

(3) Estimation of solar UV radiation and comparison with ionospheric variation

Inc space-wealier restarti

By FMT of KSU, continues multiwavelength H-alpha observations of the fulldisk Sun is completed

King Saud Univ. Flare Monitorin	g Telescope (FMT) Specifications	<u>Filters</u>		
The Flare Monitoring Telescope (FMT) observes daily the solar activities and their ong-term variation. This telescope have 6 tubes: 1) imaging telescope at H-alpha ine-center, 2) imaging telescope at H-alpha +0.8 A, 3) imaging telescope at H-alpha – 0.8 A, 4) imaging telescope at H-alpha + 1.6 A, 5) imaging telescope at H-alpha – 1.6 A and 6) auto-guiding telescope. These five imaging telescopes simultaneously observe the full-disk solar chromosphere at multi-wavelengths, and the auto-guiding telescope enables the FMT to accurately track the sun all day ong.		H-alpha + 0.8 A wave H-alpha – 0.8 A wave H-alpha + 1.6 A wave	vavelength = 656.281 nm elength = $656.281 + 0.08 \text{ nm}$ elength = $656.281 - 0.08 \text{ nm}$ elength = $656.281 + 0.16 \text{ nm}$ elength = $656.281 - 0.16 \text{ nm}$	
 Composition 1. Optical part of the FMT 2. Equatorial-type mount 3. Controlling system 4. Imaging camera system 	 1-Diameter of the objective lens 68 mm Field of View ~ 2920 x 2190 arcsec 2-Repeat ability of pointing & tracking < 1 arcsec 3- Clock: maintained by GPS 4- Auto-guiding telescope:- Optical filter: ND-filter Automatic adjustment of the solar position by using CCD sensor 	Imaging ca	Mera system 2616 x 1960 pixels 3.40 um/pixel Gbit Ethernet > 70 % at 656.3 nm	

Conclusion

Our Data and Future plane

New Benefits Of King Saud Univ--FMT

Our data

1-Place: (FMT) at King Saud University, covers the solar monitoring during the period between the temporal Kyoto University Observatory and the University Observatory AKA Thus, enables the complete follow-up monitoring of the Sun 24 hours a day.

2-In terms of wavelength: The KSU-FMT has an important issue increasing its performance and use, namely at the level of the observing wavelengths. Indeed, it covers a red-shift H-alpha +1.6 nm filter which allows measurements of very strong eruptive phenomena on the solar surface. In addition, a blue-shift H-alpha -1.6 nm filter is also added, which gives the possibility to monitor high speed falling solar material

3- seeing condition and cloudy day: Our preliminary study of seeing conditions shows that the radius of air perturbation is around 6-7cm, with very rare cloudy days (more than 300) clear days).

Our FMT will begin working on the first April, 2015 Multi-wavelengths H-alpha data will be available on line.

Future plane

We plane to continue updating our

Solar Station: Starting with

FMT We plane in the future to install

1-Coelostat & Solar spectroscope

2-Geomagnetometer for MAGDAS:

3-IGP antennas: Antennas for

measuring the ionosphere were also installed by IGP.

