Space Plasma Physics

Some modern analyses of space plasma waves

ESST and ICSWSE, Kyushu Univ. Tohru Hada

Why space plasma waves are important?

- Carrier of information (remote-sensing): gives information on the source and the medium where the wave propagates.
- Carrier of momentum flux, energy flux, etc : e.g., solar wind acceleration
- Main ingredient of various instabilities
- Efficient scatterer of energetic particles: e.g. cosmic ray diffusion and acceleration.
- Sources of anomalous dissipation
- Provides opportunities to test nonlinear wave theories: ideal natural laboratory
 and a lot more
- ... and a lot more...

What can we do from the space plasma wave data?

- wave frequency (spacecraft frame)
- mode identification
- polarization, ellipticity, helicity, etc
- power spectrum in the time domain

- dispersion relation (k and w)
- higher order spectrum in time domain (bi-coherence, tri-coherence etc)
- higher order spectrum in spatial domain
- phase statistics

Multi-point measurement

Determination of the wave number

Determination of the wave frequency is straightforward, since # data points is very large.

In contrast, # data points for space is usually small.

Suppose that a simple sinusoidal wave propagates into a region where N observation points are aligned.

Let the position of the obs points be x=d, 2d, ..., Nd, then the measurements are:

 $E_0 \sin(k_x d + \phi), \quad E_0 \sin(2k_x d + \phi), \quad \dots \quad E_0 \sin(Nk_x d + \phi)$ $= E_0 \sin(jk_x d + \phi) \equiv E_j, \quad j = 1...N$ 1.5 1.0-0.5 -0.0 --0.5 --1.0 --1.5 -Ν 10 15 20 5 0

Let the position of the obs points be x=d, 2d, ..., Nd, then the measurements are:

 $E_0 \sin(k_x d + \phi), \quad E_0 \sin(2k_x d + \phi), \quad \dots \quad E_0 \sin(Nk_x d + \phi)$ $= E_0 \sin(jk_x d + \phi) \equiv E_j, \quad j = 1...N$ 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -Ν 10 20 5 15

Now multiply by the test function, $f(K) = \sin(jKd)$ and sum over j=1 to N. What we just did is the Fourier analysis. In a more general framework, we should compute:

$$S(K) = \sum_{j=1}^{N} E_{j} \sin(jKd), \quad C(K) = \sum_{j=1}^{N} E_{j} \cos(jKd)$$
$$P(K) \equiv (S(K)^{2} + C(K)^{2})$$

The Fourier power should be maximized at

$$K = k$$

(estimation of the wave number)

Is this true?

true, but when N is a small number (which usually is the case for spacecraft experiments), this method is useless.

Determination of k: examples

Linear transformation

- If we choose

$$a_{k,n} = e^{2\pi i kn/N}$$

then we have the Fourier transform. But this does not work if N is a small number.

- Instead, try to find a better kernel

 $a'_{k,n}$

making use of the input value.

Signal
$$\mathbf{u} = \sum_{m} \{ \hat{u}_{m} \exp(ik_{m}x_{1} + i\phi_{m}), \hat{u}_{m} \exp(ik_{m}x_{2} + i\phi_{m}), ... \}$$

= $\{ u_{1}, u_{2}, ... \}$

'Naive' kernel

$$\mathbf{a}(K) = \{\exp(-iKx_1), \exp(-iKx_2), \dots\} = \{a_1, a_2, \dots\}$$

'Naive' power spectrum (BeamForming)

$$P(K) = <|\mathbf{a} \cdot \mathbf{u}|^{2} > = a_{i}^{*} < u_{i}^{*}u_{j} > a_{j} = \mathbf{a}^{+} \cdot \mathbf{R} \cdot \mathbf{a}$$
where
$$R_{ij} = < u_{i}u_{j} >$$
ensemble average
Power density matrix

One can determine a better **a'** by requiring

- P(K) is minimized when a' is used
- constraint, |a.a'|=1

This problem can be solved by Lagrange's undetermined coefficient method.

$$P(K) = < |\mathbf{a}' \cdot \mathbf{u}|^2 > = a'_i^* < u_i^* u_j > a'_j$$

Define F

$$F = a'_{i}^{*} < u_{i}^{*}u_{j} > a'_{j} - \lambda(a_{i}^{*}a'_{i}a_{j}a'_{j}^{*} - 1)$$

and require

$$\frac{\partial F}{\partial a_i} = \frac{\partial F}{\partial a_i^*} = \frac{\partial F}{\partial \lambda} = 0$$

Solution:

Weighted kernel (Capon) $\mathbf{a}'(K) = \frac{\mathbf{R}^{-1}}{\mathbf{a}^{+}\mathbf{R}^{-1}\mathbf{a}} \cdot \mathbf{a}$ This gives a Better estimate of power $P(K) = \frac{1}{\mathbf{a}^{+}\mathbf{R}^{-1}\mathbf{a}}$

Capon, IEEE, 1969 Motschmann et al, 1996; Glassmeier et al.,2001:'The wave telescope' Pinçon and Lefeuvre, 1991:'The k-filtering'

Determination of k: examples

(upper panel) #S/C=2 (at x=0, 0.2) #waves=1 (k=3)

(lower panel) #waves=3 (k=3, 4, 5) #S/C= 3 (at 0, 0.2, 0.4) #S/C= 4 (at 0, 0.2, 0.4, 0.6)

Resolution improved.
Need N+1 s/c to resolve superposition of N waves.

Dispersion relation of foreshock waves

Narita and Glassmeier, 2005

Dispersion relation of foreshock waves

Narita and Glassmeier, 2005

Bi-spectrum

Linear and nonlinear waves

small amplitudesuperposition principle

- finite amplitude
- background medium modified
 by presence of the waves

Interaction of finite amplitude waves

- Large amplitude MHD waves are ubiquitous in space.
- One should be able to see "Nonlinear interaction among waves".

For example

	+ \bigcirc	=		+	
Alfven	Sound		Alfven-1		Alfven-2

- The interaction can be captured by Higher-Order statistics.
- Evaluation both in 'time' and 'spatial' domains.
- # of data points for the 'spatial' domain very limited.

Interaction of finite amplitude waves

Nonlinear coupling produces oscillations with $\Phi_1 + \Phi_2, \Phi_1 - \Phi_2$

Resonance: $\omega_1 + \omega_2 = \omega_3$ $k_1 + k_2 = k_3$ $\varphi_1 + \varphi_2 = \varphi_3 + c$

Matching of frequency, wavenumber, and the phase. If the phase is random, the coupling vanishes via averaging.

Bi-spectrum

In time domain

$$F(\boldsymbol{\omega}_1, \boldsymbol{\omega}_2) = \langle b(\boldsymbol{\omega}_1) n(\boldsymbol{\omega}_2) b^*(\boldsymbol{\omega}_1 + \boldsymbol{\omega}_2) \rangle$$

In spatial domain

$$F(k_1,k_2) = \langle b(k_1)n(k_2)b^*(k_1+k_2) \rangle$$

- If the relative phase of b1, n2, b3* is fixed at a certain value, the ensemble average gives a finite value.
- Otherwise, i.e., if these waves just happen to exist but they are not nonlinearly interacting, the ensemble average is cancelled.

Evaluation of bi-spectrum in timedomain

Bi-spectrum by BeamForming

Signal $\mathbf{u} = \{\hat{u} \exp(ikx_1), ..., \hat{u} \exp(-ikx_M)\}$ 'Naive' kernel $\mathbf{a}(K) = \{\exp(-iKx_1), ..., \exp(-iKx_M)\}$

$$p < k_1, k_2 >= < \mathbf{a}(k_1) \cdot \mathbf{u} \ \mathbf{a}(k_2) \cdot \mathbf{v} \left(\mathbf{a}(k_1 + k_2) \cdot \mathbf{u}\right)^* >$$

Evaluation of bi-spectrum in spatial domain

Waves with k1=5, k2=2, and k3=7 are in resonance. Plus random noise.

Compare the bi-coherence due to the BF and the capon. Vary # of data points (= # of spacecraft)

Narita et al., 2009

Phase statistics

The earth's foreshock

Large amplitude waves in the earth's foreshock

Dispersion relation and the spectrum

Narita and Glassmeier, 2005

Narita et al, 2005

(ideal) MHD equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho \mathbf{u}) &= 0 \\ \frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho u^2 + p - \frac{\mathbf{B}_{\perp}^2}{2}) &= 0 \\ \frac{\partial}{\partial t}(\rho \mathbf{v}) + \frac{\partial}{\partial x}(\rho u \mathbf{v} - \mathbf{B}_{\perp}) &= 0 \\ \frac{\partial}{\partial t}(\frac{\rho(u^2 + \mathbf{v}^2)}{2} + \frac{\mathbf{B}_{\perp}^2}{2} + \frac{P}{\gamma - 1}) \\ &+ \frac{\partial}{\partial x}(\frac{\rho u}{2}(u^2 + \mathbf{v}^2) + u\mathbf{B}_{\perp}^2 - \mathbf{v} \cdot \mathbf{B}_{\perp} + \frac{\gamma P u}{\gamma - 1}) = 0 \\ \frac{\partial \mathbf{B}_{\perp}}{\partial t} + \frac{\partial}{\partial x}(u\mathbf{B}_{\perp} - \mathbf{v}B_x) &= 0 \end{aligned}$$

 $\frac{\partial B_x}{\partial x} = 0$

invariant under $t \rightarrow \alpha t, x \rightarrow \alpha x$

Cascade of vortices

Fern: the fractal

Cloud and Lightning : fractals

from wikipedia

http://www.um.u-tokyo.ac.jp/publish_db/2006jiku_design/sano.html

Roles of the phases

Fern (real & simulation) and cloud/lightning have similar power-law type spectrum. But they look very different in real space.

why?

-- phase distribution

Superposition of waves with different phase distributions

t

t

Phase coherence in nonlinear systems

Manifestation of nonlinearity Examples: Huygens pendulums / Fireflies / ...

Are the foreshock MHD waves phase coherent?

Phase coherence in MHD waves

- Manifestation of nonlinearity
 - Huygens pendulums / Fireflies / etc
- Assumed in quasi-linear theories
 - Random Phase Approximation almost always assumed
 - Particle diffusion processes can be qualitatively different in phase correlated turbulence
- Finite phase coherence exits in MHD turbulence in space
 Evaluated using Geotail magnetic field data

Fourier transform: amplitude, frequency, and phase

$$b(t) = \sum_{\omega} \hat{b}(\omega) \sin(\omega t + \phi_{\omega})$$

Define the phase correlation in REAL space

- From the original time series (OBS), make
 - Phase Randomized Surrogate (PRS) and
 - Phase Correlated Surrogate (PCS)
- Evaluate Structure functions for each dataset $S(m,\tau) = \sum_{t} |b(t+\tau) - b(t)|^{m}$
- Define the phase coherence index

$$C_{\phi} = \frac{S_{PRS} - S_{OBS}}{S_{PRS} - S_{PCS}}$$

Evolution of C ϕ as S/C travels through various regions

Wave amplitude dependence of C¢

Phase coherence index Cφ evaluated by comparing structure functions of the original and surrogate datasets.

Positive correlation with the turbulence amplitude: Nonlinear interaction generates the phase coherence

Hada, Koga, Yamamoto, 2003 Koga and Hada, 2003

Application to numerical simulation data

Summary

- Waves in space plasma provides various opportunities to evaluate linear and nonlinear processes taking place in the plasma.
- Concepts and some examples of multi-point measurement, bi-spectra in time and spatial domains, and phase statistics are introduced.
- Effort to construct a method to drag as much information as possible from given dataset is an extremely important subject of science.

Magnetic field ~ 5 nT Plasma density ~ 5 /cc Solar wind velocity ~ 400 km/s Alfven velocity ~ 50 km/s Ion gyro frequency ~ 0.1 /s Plasma frequency ~ 3000 /s

Convection time scale in the foreshock ~ 300 sec

One can make in situ measurement of the sequence: MHD wave excitation - Nonlinear evolution -Generation of Turbulence

Phase distribution depends on the coordinates

Bi-coherence: examples

