

2012 ISWI & MAGDAS School 17-26 September 2012 Bandung, Indonesia

Sensing of upper and lower levels of the polar atmospheres using GPS

Wayan Suparta

Institute of Space Science (ANGKASA) UNIVERSITI KEBANGSAAN MALAYSIA

씁

 \triangleleft

Institute of Space Science (ANGKASA), UKM

Introduction

- The Global Navigation Satellite System (GNSS), particularly Global Positioning System (GPS) technology has become an essential tool in retrieving the ionospheric total electron content (TEC) and the atmospheric precipitable water vapor (PWV) at a low-cost, global scale covered and with superior temporal and spatial resolution through earth-based receivers.
- Presently, the intense development of TEC data from ground-based GPS receivers such used to monitor the ionospheric dynamics related to the space weather characterizing quantities (e.g. Jakowski et al., 2001; Cander, 2003), to detect the ionospheric response of strong earthquakes (Calais and Minster, 1995) and rocket launchings (Calais and Minster, 1996).

http://www.wirelessdictionary.com

• While PWV data developed were employed such as used for improving numerical weather forecast. In addition to the effective tool of GPS in various applications related to the Earth observation, an analysis of atmospheric structures and visualization of both tropospheric and ionospheric in real-time monitoring can help us to understand the connection processes between the solar activity and the terrestrial response.

Therefore through the GPS measurements, the upper and lower levels of the atmosphere in Polar Regions are highlighted as an effort to gain knowledge and share the experience to establish the solarclimate relationship

Since the Polar Regions open as a natural laboratory for sensing the vast regions of near-Earth toward teleconnection between the upper and lower levels of the atmosphere, this talk addresses the determination of TEC and PWV from a GPS perspective.

Outline

- Definition of the upper and the lower atmosphere
- Upper Atmosphere (Ionosphere): TEC derivation, advantage, and example application)
- Lower Atmosphere
 (Troposphere): PWV
 derivation, example data,
 Applications
 - Some Notes

Definition

Definition of Upper and Lower Atmospheres

Atmospheric layer

- Scientists have defined of both terms in various ways. In the context of meteorologists, the "lower atmosphere" may be described as extending from the planetary surface (the troposphere) to the lower stratosphere where the daily weather evolves.
- Height effective ~ 40 km from sea level.

http://www.esrl.noaa.gov/gmd/education/lesson_plans/

For the "upper atmosphere", it is referred to the entire region above the troposphere includes the mesosphere, the ionosphere and the thermosphere that identified by temperature structure, density, composition and the degree of ionization.

http://utd500.utdallas.edu/ionosphere.htm

- When we looking on the radio waves such as GPS signals propagated through the atmosphere, the atmosphere can be divided into two division; the neutral atmosphere and the ionosphere.
- The neutral atmosphere layer consists of three temperaturedelineated regions: the troposphere, the stratosphere and part of the mesosphere. It is often simply referred as the troposphere because in radio wave propagation, the troposphere effects dominate.

Table 1 Layers of the lonosphere

Layer	Approximate Elevation	Importance	When Present	
F	140 km - 400 km	Main "reflection" region	Always - stronger during daytime	
E	90 km - 140 km	Lower frequency "reflection" region	Always - but very weak at night	
D	50 km - 90 km	Main absorption region	Daytime only	

"Outside of the Earth's atmosphere"

Altitude (km)	Temperature	Ionization	Magnetic field	Propagation	Technical
10000 -		Protonosphere		Ionosphere	
1000 -	THERMOSPHERE		Magnetosphere		Upper Atmosphere
100 —	7	Iono <i>s</i> phere			
10 —	MESOSPHERE STRATOSPHERE TROPOSPHERE	Neutrono- sphere	Dynamosphere	Troposphere	Lower Atmosphere

Source: Seeber (1993)

Upper-Lower from GPS Perspective

Wave propagation: the delay

The greatest impact on GPS positional accuracy:

- Ionosphere δ_{iono} - Troposphere δ_{tropo}
- By exploiting the delay between GPS and receiver, we are able to extract the total electron content and vertical column of water vapor from GPS measurements.

user $\Delta S = \int Ne \, ds$

Ionosphere (Upper) – Troposphere (Lower)

Skyplot for 30 Nov 2007

Sky view between North and South Poles are opposite responses

Example TEC Results

Submitted to JGR-Space Physics (2012)

TEC for selected stations in Antarctica (2007)

Some Notes

TEC Data Applications:

- Improving positioning accuracy in production of GPS antenna
- Description the quantity for the ionosphere of the Earth
 - Satellite navigation system
 - Telecommunication system
- Space weather monitoring and forecasting
- Space weather climatology
- Teleconnections between the ionospheric regions
- Correction factors for GPS users to enhance the accuracy of satellite measurements
- Earthquake and tsunami prediction

http://www.ips.gov.au/Satellite/2/2

Etc.

Part 1: Computing the Total Electron Content (TEC) Using GPS Measurements

GPS TEC

- Currently, several models for accurate TEC estimation to be apply for GPS precise positioning applications has been conducted (Coco et al., 1991; Wanninger, 1993; Klobuchar, 1996; Warnant, 1997; Otsuka et al., 2002; Chen et al., 2004; Brunini et al., 2005; Arikan et al., 2008).
- In this work, the TEC computation from GPS observables on *simple (ideal) model* and with *considering instrumental bias* like receiver differential bias, receiver offset, differential code biases (DCBs) or inter-frequency bias (IFB) will be highlighted.

- Many TEC estimation techniques in the literature use the Single Layer Ionosphere Model (SLIM) such as Lanyi and Roth (1988), Schaer (1999), Otsuka et al. (2002), and Arikan et al. (2003).
- I n SLIM model, ionosphere is assumed to be a thin, spherical shell of constant ionospheric height. This height generally corresponds to the height of maximum ionization density.
- SLIM model enables a conversion between slant TEC (STEC) and vertical TEC (VTEC).
- In literature, ionospheric heights from 300 km to 450 km have been used due to varying height of maximum ionization density (Komjathy, 1997).

 TEC is defined as the line integral of electron density along a raypath L or as a measure of the total number of electrons along a path of the radio wave (Budden, 1985)

$$TEC = \int_{S} N_e(s) \, ds \tag{1}$$

- with **refractivity** is defined as $N = 10^6(n 1)$
- The propagation velocity of the ionosphere at GPS frequencies (Hofmann-Wellenhof, 2001) for phase and group velocity, can be expressed as

$$v_p = \frac{c}{n_p}, v_g = \frac{c}{n_g} = v_p - \lambda \frac{dv_p}{d\lambda}$$
 (2)

 Differentiation of the phase velocity with respect to λ

$$\frac{dv_p}{d\lambda} = -\frac{c}{n_p^2} \frac{dn_p}{d\lambda}$$
(3)

 The refractive index (n) of the ionosphere at GPS frequencies for phase and group, can be expressed as

$$n_{g} = n_{p} + f \frac{dn_{ph}}{df} \qquad (4)$$

$$n_{p} = 1 + \frac{A}{f^{2}} + \frac{B}{f^{3}} + \frac{C}{f^{4}} + \dots \cong 1 + \frac{A}{f^{2}} \qquad (5)$$

$$dn_{p} = -\frac{2A}{f^{3}}df \qquad \longrightarrow \qquad n_{g} = 1 - \frac{A}{f^{2}} \qquad (6) \qquad (6)$$

 The STEC at the point of intersection of the GPS ray path with the ionospheric shell, can be determined using range error (e.g., Yizengav, yesterday)

$$STEC = \int_{0}^{s} Ndr = \left(\frac{f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\right) \frac{2f_{1}^{2}}{K} \Delta P_{l,2}$$

 STEC can also be computed using differential phase advance

$$STEC = \int_{0}^{s} Ndr = \left(\frac{f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\right) \frac{2f_{1}^{2}}{K} \Delta L_{l,2}$$

• In both cases, the STEC can be converted to VTEC at IPP as follow:

(10)

$$VTEC = STEC \cos z' \quad (9)$$

and an abliguity factor or mapping function:

$$\sin z' = \frac{R_E}{R_E + h_m} \sin z$$

$$\sin^2 z + \cos^2 z = 1$$
, and $z = 90^0 - \alpha$

$$\cos z' = \left(1 - \frac{R_E^2 \cos^2 \alpha}{(R_E + h_m)^2}\right)^{1/2}$$

RINEX (*.obs): An example

2.11	OBSERVATION D	ATA G (GPS)	0.00.06.000	RINEX VERSION /	TYPE	
Linux 2.4.21-27.	Fismplopteronlacc	-staticlinux	x86 641=+	COMMENT	DATE	
BIT 2 OF LLI FLA	AGS DATA COLLECTED	UNDER A/S CON	DITION	COMMENT		
MCM4		· ·		MARKER NAME		
66001M003				MARKER NUMBER		
GGN	JPL			OBSERVER / AGEN	ICY	
ZR520021808	ASHTECH UZ-12	CQ00		REC # / TYPE /	VERS	
363	AOAD/M_T	JPLA		ANT # / TYPE		
-1311703.1720	310814.9820 -621	3255.1600		APPROX POSITION	I XYZ	
0.0814	0.0000	0.0000		ANTENNA: DELTA	H/E/N	
	12 01 02	C1		# / TYPES OF OP		
30,0000	LZ PI PZ	CI		# / ITPES OF OB	DERV	
30.0000				COMMENT		
Forced Modulo De	ecimation to 30 se	conds		COMMENT		
SNR is mapped t	to RINEX snr flag	value [0-9]		COMMENT		
L1 & L2: min(n	max(int(snr_dBHz/6). 0). 9)		COMMENT		
pseudorange smoo	othing corrections	not applied		COMMENT		
2012 7	18 0 0	0.0000000	GPS	TIME OF FIRST O	BS	
1040400 8000404040 0000 000				END OF HEADER		
12 7 18 0 0	0.0000000 0 12G	15G29G07G18G16	G30G03G26G08	G06G21G05		
-5391071.56347	7 -4179509.24647	23940202.5944	23940205.	4374 23940202.	687	
-5892260.98447	7 -4536889.82347	24532989.0584	24532992.	9604 24532988.	532	
-1034/049.6/548	8 -8053040.5924/	22669558.1124	22669559.	6984 22669557.	535	
-3134453.3414/	/ -2423842.28840 11117387 20147	23012919.3534	23012922.	2284 23012918.	859	
7621781 05047	7 5999443 99046	22308001.01/4	22306003.	1564 24528126	205	
-8492795 01647	7 _6598234 42147	23463584 0494	23463587	5444 23463584	486	
-13717288, 98348	8 -10674980 23147	22679192,8814	22679195	9244 22679192	118	
-11751529.17648	8 -9090416.60147	22765380,6074	22765384.	8114 22765381.	581	
-18837440.99148	8 -14608315.66547	22389910.4594	22389913.	1204 22389910.	712	
-23338070.53349	9 -18090676.01548	20683955.2054	20683957.	4504 20683955.	151	
-15398245.53648	8 -11983252.26347	22628998.1034	22629000.	9294 22628997.	671	
12 7 18 0 0	30.0000000 0 12G	15G29G07G18G16	G30G03G26G08	G06G21G05		
-5496040.57647	-4261303.22947	23920228.0474	23920229.	8184 23920226.	722	
-5//3814.0854/	-4444593./4846	24555527.9004	24555532.	3824 2455552/.	35/	
-1031/5//.88948	5 -80300/5.5004/	220/0100.9044	220/0108.	2494 226/5164.	931	
-3231008.9304/	r = 2310711.01940 r = 11077657 20147	25590/2/.5154	23390/29.	222222222222222222222222222222222222222	215	
-7537361 42647	7 -5814869 13946	24546093 0654	24546093	3784 24546093	608	
-8566572.94147	-6655723.71447	23449545,8374	23449549.	0324 23449545.	388	
-13768117.32348	8 -10714586.72047	22669520, 3614	22669523.	6644 22669520.	000	
-11807856.72948	8 -9134308.20447	22754661.3534	22754664.	8464 22754661.	216	
-18902672.38748	8 -14659145.31147	22377497.1474	22377500.	8194 22377496.	966	
-23347488.99049	9 -18098015.08048	20682162.7664	20682165.	2044 20682162.	827	
-15315385.63848	8 -11918686.12347	22644766.5954	22644768.	1064 22644765.	327	•
12 7 18 0 1	0.0000000 0 12G	15G29G07G18G16	G30G03G26G08	G06G21G05		le la
-5600756.88347	-4342900.32147	23900300.9124	23900302.	9824 23900301.	523	
-5055231.20347	-4352191.61/46	245/8094.6814	245/8095.	0//4 245/8093.	/26	
-1028/461.15348	5 -8006607.99047	22080896.9554	22680899.	4914 22680895.	997	

GPS TEC with instrumental biases

The standard model for pseudorange recording for two frequencies f_1 and f_2 are as follows (Leick, 2004):

$$P_{1,r}^{s} = p_{r}^{s} + c\left(\delta t_{r} - \delta t^{s}\right) - d_{trop}^{s} + d_{ion1}^{s} + c\left(\varepsilon_{1}^{s} + \varepsilon_{1,r}\right) (11)$$

$$P_{2,r}^{s} = p_{r}^{s} + c\left(\delta t_{r} - \delta t^{s}\right) - d_{trop}^{s} + d_{ion2}^{s} + c\left(\varepsilon_{2}^{s} + \varepsilon_{2,r}\right) (12)$$
Clock errors
Biases

The difference between (11) and (12) is called the geometry free linear combination of pseudorange because of the actual range *p* is eliminated as

$$P_{4,r}^{s} = P_{2,r}^{s} - P_{1,r}^{s}$$

$$= d_{ion2}^{s} - d_{trop}^{s} + c(\varepsilon_{2}^{s} - \varepsilon_{1}^{s}) + c(\varepsilon_{2,r} - \varepsilon_{1,r})$$
(13)

Similar equations can be written for phase delay observations (Leick, 2004):

$$L_{1,r}^{s} = \lambda_{1} \Phi_{1,r}^{s} = p_{r}^{s} + c \left(\delta t_{r} - \delta t^{s} \right) + \lambda_{1} \Phi_{ion1,r}^{s} + \lambda_{1} \Phi_{trop,r}^{s} - c \left(\varepsilon_{1}^{s} + \varepsilon_{1,r} \right) + \lambda_{1} N_{1}^{s}$$
(14)
$$L_{2,r}^{s} = \lambda_{2} \Phi_{2,r}^{s} = p_{r}^{s} + c \left(\delta t_{r} - \delta t^{s} \right) + \lambda_{2} \Phi_{ion2,r}^{s} + \lambda_{2} \Phi_{trop,r}^{s} - c \left(\varepsilon_{2}^{s} + \varepsilon_{2,r} \right) + \lambda_{2} N_{2}^{s}$$
(15)
$$N_{1}^{s} \text{ and } N_{2}^{s}, \text{ denote the initial phase ambiguity of } f_{1} \text{ and } f_{2}$$

 The difference between (14) and (15) is called the geometry free linear combinations of phase delay and is given as

$$L_{4,r}^{s} = \lambda_{1} \Phi_{1,r}^{s} - \lambda_{2} \Phi_{2,r}^{s} = \lambda_{1} \Phi_{ion1,r}^{s} - \lambda_{2} \Phi_{ion2,r}^{s} + c \left(DCB^{s} \right) + c \left(DCB_{r} \right) + \Delta N^{s}$$

$$\Delta N^{s} = \lambda_{1} N_{1}^{s} - \lambda_{2} N_{2}^{s}$$

$$(16)$$

Using the approximation given by Liao (2000) and Leick (2004):

$$d_{ion,r}^{s} = -\Phi_{ion,r}^{s} \frac{c}{f} \approx A \frac{STEC_{r}^{s}}{f^{2}}, \ A = 40.3 \, m^{3} \, / \, s^{2}$$
(17)

Using equation (17) in equations (13) and (16), the expressions for the geometry free combinations are obtained as follows (Leick, 2004; Komjathy, 1997; Nayir, 2007):

$$P_{4,r}^{s} = A \left(\frac{f_{1}^{2} - f_{2}^{2}}{f_{1}^{2} f_{2}^{2}} \right) STEC_{r}^{s} - c \left(DCB^{s} - DCB_{r} \right)$$
(18)

$$L_{4,r}^{s} = A \left(\frac{f_{1}^{2} - f_{2}^{2}}{f_{1}^{2} f_{2}^{2}} \right) STEC_{r}^{s} - c \left(DCB^{s} - DCB_{r} \right) + \Delta N^{s}$$
(19)

STEC values for each satellite and receiver pair can be obtained from (19) as

$$STEC_{r}^{s}(n) = \frac{1}{A} \left(\frac{f_{1}^{2} f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}} \right) \left[P_{4,r}^{s}(n) + c \left(DCB^{s} - DCB_{r} \right) \right]$$
(20)

n is sample time $(1 \le n \le N)$, for 24h with data recorded every 30s, N = 2880.

How to solve ΔN^s or STEC computed using phase delay?

One method can be employed is leveling or fitting of L₄ to P₄ by defining a baseline for each connected arc of phase measurements (Lanyi and Roth, 1988; Otsuka et al., 2002):

$$B^{s} = \frac{1}{N_{me}} \sum_{n_{me}=1}^{N_{me}} \left(P_{4,r}^{s}(n_{me}) - L_{4,r}^{s}(n_{me}) \right)$$
(21)

where N_{me} is time duration of total samples, and n_{me} is the time index of the samples in the connected phase arc.

• The STEC now can be expressed as follow:

$$STEC_{r}^{s}(n) = \frac{1}{A} \left(\frac{f_{1}^{2} f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}} \right) \left[B^{s} + L_{4,r}^{s}(n) + c \left(DCB^{s} + DCB_{r} \right) \right]$$
(22)

Now STEC can be computed using (20) or (22). The STEC can be converted to VTEC using (9).

Similar equations can be written for phase delay observations (Leick, 2004):

$$L_{1,r}^{s} = \lambda_{1} \Phi_{1,r}^{s} = p_{r}^{s} + c \left(\delta t_{r} - \delta t^{s} \right) + \lambda_{1} \Phi_{ion1,r}^{s} + \lambda_{1} \Phi_{trop,r}^{s} - c \left(\varepsilon_{1}^{s} + \varepsilon_{1,r} \right) + \lambda_{1} N_{1}^{s}$$
(14)
$$L_{2,r}^{s} = \lambda_{2} \Phi_{2,r}^{s} = p_{r}^{s} + c \left(\delta t_{r} - \delta t^{s} \right) + \lambda_{2} \Phi_{ion2,r}^{s} + \lambda_{2} \Phi_{trop,r}^{s} - c \left(\varepsilon_{2}^{s} + \varepsilon_{2,r} \right) + \lambda_{2} N_{2}^{s}$$
(15)
$$N_{1}^{s} \text{ and } N_{2}^{s}, \text{ denote the initial phase ambiguity of } f_{1} \text{ and } f_{2}$$

 The difference between (14) and (15) is called the geometry free linear combinations of phase delay and is given as

$$L_{4,r}^{s} = \lambda_{1} \Phi_{1,r}^{s} - \lambda_{2} \Phi_{2,r}^{s} = \lambda_{1} \Phi_{ion1,r}^{s} - \lambda_{2} \Phi_{ion2,r}^{s} + c \left(DCB^{s} \right) + c \left(DCB_{r} \right) + \Delta N^{s}$$

$$\Delta N^{s} = \lambda_{1} N_{1}^{s} - \lambda_{2} N_{2}^{s}$$

$$(16)$$

Using the approximation given by Liao (2000) and Leick (2004):

$$d_{ion,r}^{s} = -\Phi_{ion,r}^{s} \frac{c}{f} \approx A \frac{STEC_{r}^{s}}{f^{2}}, \ A = 40.3 \, m^{3} \, / \, s^{2}$$
(17)

Satellite elevation angle

The formula for calculation elevation angle is given as

$$\theta(x, y, z, t) = \sin^{-1}(up \bullet V))$$
⁽⁴⁾

with

$$V = [X_{k} / D(t, nsat); Y_{k} / D(t, nsat); Z_{k} / D(t, nsat)]$$

$$D(t, nsat) = \left((X_{k} - X_{r})^{2} + (Y_{k} - Y_{r})^{2} + (Z_{k} - Z_{r})^{2} \right)^{\frac{1}{2}}$$

$$up = \left[X_{r} / R_{r}; Y_{r} / R_{r}; Z_{r} / R_{r} \right]$$

$$R_{r} = \left(X_{r}^{2} + Y_{r}^{2} + Z_{r}^{2} \right)^{\frac{1}{2}}$$

where

V is vector position of each satellite at any given time,

up is unit vector at the receiver position,

D(t, nsat) is geometry range 'topocentric' between receiver and *n* satellite view at given time *t*.

(5)

TEC for selected stations in Antarctic and Arctic

Submitted to IJRS (2012)

DOI: 10.3844/ajassp.2012.894.901

Another TEC for selected stations in Antarctic region

Real-time Global Map TEC

TEC between the hemispheres (21/09/2009)

TEC data use for aurora study

GPS TEC variations in Polar Regions

What is aurora?

Auroras are usually observed at night and are commonly visible between 65 to 72 degrees north and south latitudes, which place them in a ring just within the Arctic and Antarctic circles.

Intermittent spectrum for the aurora (Sato, 2009)

Auroral emission spectrum

The 'color' depending on the amount of energy absorbed and latitudes

Geomagnetic activity response

 Magnetic measurements from ACE spacecraft and ground geomagnetic activity (IMF B_y and B_z).

 The disturbance seen at 20:00 UT on 20 Sep ~ 07:00 UT on 21 Sep 2011

Aurora activity on 21 Sep 2009

- Looking at the time from 00:47:54 UT to 00:50:14 UT between TJOR and SYOG.
- It is seen that four east-west aligned spiral-like auroral arcs moving eastward in both ASC field of views (FOVs) and each of them had almost a similar form between TJOR and SYOG.

Aurora breakup at conjugate point

Keogram – GPS TEC

- The conjugate auroras in the late stage of the substorm (after 00:45 UT) between All-sky CCD camera and keogram shows similar features.
- TEC enhancement during a weak substorm can be understood by the enhancement of electron density in the E- and F-regions created by the precipitating auroral electrons associated with the auroral activity.

Height of Aurora

How aurora connecting to TEC?

TEC Products

Several products are now available to estimate the TEC every where and at any time.

- Global Ionospheric Maps (GIM): The International GNSS Service (IGS) Analysis Centre (<u>http://igscb.jpl.nasa.gov/components/prods.html</u>) provides VTEC maps. VTEC maps are global maps modeled by using up to 250 globally distributed GNSS stations and using TEC interpolation using spherical harmonics (e.g. Schaer et al., 1998). These maps are estimated every two hours on a 2.5° /5° grid. The CODE Analysis Centre Global Ionospheric Map (GIM), available at <u>ftp://ftp.unibe.ch/aiub/CODE/</u>).
- Klobuchar model: The Klobuchar model (Klobuchar, 1987) is the broadcast Ionospheric Correction Algorithm (ICA) implemented in the GPS system. It is designed to correct for approximately 50% of the ionospheric range delay in GPS measurements . It predicts the VTEC at a given time above a given location.
- IRI 2007 model: The International Reference Ionosphere (IRI) (<u>http://ccmc.gsfc.nasa.gov/modelweb/models/iri_vitmo.php</u>) .This an empirical model based on a wide range of ground and space data (e.g. Bilitza and Reinisch, 2008). It gives monthly averages of electron density, ion composition (O⁺, H⁺, N⁺, He⁺, O⁺₂, NO⁺ and Cluster⁺), ion temperature and ion drift in the altitude range 50-1500 km in the non-auroral ionosphere.
- Nequick model: This empirical model has been proposed for use in making ionospheric corrections in the single frequency operation of the European Galileo project. It is a quick-run model that allows calculation of the electron concentration at any given location in the ionosphere and thus the TEC along any ground-to-satellite ray-path by means of numerical integration (e.g. Hochegger et al., 2000).