Universiti Kebangsaan Malaysia
The National University of Malaysia

Sensing of upper and lower levels of the polar atmospheres using GPS

Wayan Suparta

Institute of Space Science (ANGKASA)
UNIVERSITI KEBANGSAAN MALAYSIA

Introduction

- The Global Navigation Satellite System (GNSS), particularly Global Positioning System (GPS) technology has become an essential tool in retrieving the ionospheric total electron content (TEC) and the atmospheric precipitable water vapor (PWV) at a low-cost, global scale covered and with superior temporal and spatial resolution through earth-based receivers.
- Presently, the intense development of TEC data from ground-based GPS receivers such used to monitor the ionospheric dynamics related to the space weather characterizing quantities (e.g. Jakowski et al., 2001; Cander, 2003), to detect the ionospheric response of strong earthquakes (Calais and Minster, 1995) and rocket launchings (Calais and Minster, 1996).

http://www.wirelessdictionary.com
- While PWV data developed were employed such as used for improving numerical weather forecast. In addition to the effective tool of GPS in various applications related to the Earth observation, an analysis of atmospheric structures and visualization of both tropospheric and ionospheric in real-time monitoring can help us to understand the connection processes between the solar activity and the terrestrial response.

- Therefore through the GPS measurements, the upper and lower levels of the atmosphere in Polar Regions are highlighted as an effort to gain knowledge and share the experience to establish the solarclimate relationship
- Since the Polar Regions open as a natural laboratory for sensing the vast regions of near-Earth toward teleconnection between the upper and lower levels of the atmosphere, this talk addresses the determination of TEC and PWV from a GPS perspective.

Outline

* Definition of the upper and the lower atmosphere
* Upper Atmosphere (Ionosphere): TEC derivation, advantage, and example application)
* Lower Atmosphere (Troposphere): PWV derivation, example data, Applications
* Some Notes

Definition

Definition of Upper and Lower Atmospheres

Atmospheric layer

- Scientists have defined of both terms in various ways. In the context of meteorologists, the "lower atmosphere" may be described as extending from the planetary surface (the troposphere) to the lower stratosphere where the daily weather evolves.
- Height effective ~ 40 km from sea level.

The Layers of the Atmosphere

To Outer Space

- For the "upper atmosphere", it is referred to the entire region above the troposphere includes the mesosphere, the ionosphere and the thermosphere that identified by temperature structure, density, composition and the degree of ionization.

http://utd500.utdallas.edu/ionosphere.htm
- When we looking on the radio waves such as GPS signals propagated through the atmosphere, the atmosphere can be divided into two division; the neutral atmosphere and the ionosphere.
- The neutral atmosphere layer consists of three temperaturedelineated regions: the troposphere, the stratosphere and part of the mesosphere. It is often simply referred as the troposphere because in radio wave propagation, the troposphere effects dominate.

Table 1
Layers of the lonosphere

Layer	Approximate Elevation	Importance
F	$140 \mathrm{~km}-400 \mathrm{~km}$	Main "reflection" region
E	$90 \mathrm{~km}-140 \mathrm{~km}$	Always - stronger during daytime
D	$50 \mathrm{~km}-90 \mathrm{~km}$	Lower frequency "reflection" region
Always - but very weak at night		
	Main absorption region	Daytime only

"Outside of the Earth's atmosphere"

Source: Seeber (1993)

Upper-Lower from GPS Perspective

Wave propagation: the delay

http://www.spaceweather.com
GPS
The greatest impact on GPS positional accuracy:

- Ionosphere $\delta_{\text {iono }}$
 - Troposphere $\delta_{\text {tropo }}$

- By exploiting the delay between GPS and receiver, we are able to extract the total electron content and vertical column of water vapor from GPS measurements.

Ionosphere (Upper) - Troposphere (Lower)

Skyplot for 30 Nov 2007

North Pole

GPS SVs PRN visible at UKM site on 30 Nov 2007

South Pole

Sky view between North and South Poles are opposite responses

Example TEC Results

Submitted to JGR-Space Physics (2012)

TEC for selected stations in Antarctica (2007)

Presented at SCAR 2008

Some Notes

TEC Data Applications:

- Improving positioning accuracy in production of GPS antenna
- Description the quantity for the ionosphere of the Earth
> Satellite navigation system
$>$ Telecommunication system
- Space weather monitoring and forecasting
- Space weather climatology
- Teleconnections between the ionospheric regions
- Correction factors for GPS users to enhance the accuracy of satellite measurements
- Earthquake and tsunami prediction
- Etc.

http://www.ips.gov.au/Satellite/2/2

Part 1:Computing the Total Electron Content (TEC) Using GPS Measurements

GPS TEC

- Currently, several models for accurate TEC estimation to be apply for GPS precise positioning applications has been conducted (Coco et al., 1991; Wanninger, 1993; Klobuchar, 1996 ; Warnant, 1997; Otsuka et al., 2002; Chen et al., 2004; Brunini et al., 2005; Arikan et al., 2008).
- In this work, the TEC computation from GPS observables on simple (ideal) model and with considering instrumental bias like receiver differential bias, receiver offset, differential code biases (DCBs) or inter-frequency bias (IFB) will be highlighted.

http://gnss.be/
- Many TEC estimation techniques in the literature use the Single Layer Ionosphere Model (SLIM) such as Lanyi and Roth (1988), Schaer (1999), Otsuka et al. (2002), and Arikan et al. (2003).
- I n SLIM model, ionosphere is assumed to be a thin, spherical shell of constant ionospheric height. This height generally corresponds to the height of maximum ionization density.
- SLIM model enables a conversion between slant TEC (STEC) and vertical TEC (VTEC).
- In literature , ionospheric heights from 300 km to 450 km have been used due to varying height of maximum ionization density (Komjathy, 1997) .
- TEC is defined as the line integral of electron density along a raypath L or as a measure of the total number of electrons along a path of the radio wave (Budden, 1985)

$$
\begin{equation*}
T E C=\int_{S} N_{e}(s) d s \tag{1}
\end{equation*}
$$

- with refractivity is defined as $N=10^{6}(n-1)$

$$
n=1-\frac{40.3}{f^{2}} N
$$

- The propagation velocity of the ionosphere at GPS frequencies (Hofmann-Wellenhof, 2001) for phase and group velocity, can be expressed as

$$
\begin{equation*}
v_{p}=\frac{c}{n_{p}}, v_{g}=\frac{c}{n_{g}}=v_{p}-\lambda \frac{d v_{p}}{d \lambda} \tag{2}
\end{equation*}
$$

- Differentiation of the phase velocity with respect to λ

$$
\begin{equation*}
\frac{d v_{p}}{d \lambda}=-\frac{c}{n_{p}^{2}} \frac{d n_{p}}{d \lambda} \tag{3}
\end{equation*}
$$

- The refractive index (n) of the ionosphere at GPS frequencies for phase and group, can be expressed as

$$
\begin{align*}
& n_{g}=n_{p}+f \frac{d n_{p h}}{d f} \tag{4}\\
& n_{p}=1+\frac{A}{f^{2}}+\frac{B}{f^{3}}+\frac{C}{f^{4}}+\ldots \cong 1+\frac{A}{f^{2}} \tag{5}\\
& d n_{p}=-\frac{2 A}{f^{3}} d f \Longrightarrow n_{g}=1-\frac{A}{f^{2}}
\end{align*}
$$

- The STEC at the point of intersection of the GPS ray path with the ionospheric shell, can be determined using range error (e.g., Yizengav, yesterday)
STEC $=\int_{0}^{s} N d r=\left(\frac{f_{2}^{2}}{f_{l}^{2}-f_{2}^{2}}\right) \frac{2 f_{l}^{2}}{K} \Delta P_{l, 2}$

- STEC can also be computed using differential phase advance

$$
\begin{equation*}
\text { STEC }=\int_{0}^{s} N d r=\left(\frac{f_{2}^{2}}{f_{1}^{2}-f_{2}^{2}}\right) \frac{2 f_{1}^{2}}{K} \Delta L_{l, 2} \tag{8}
\end{equation*}
$$

- In both cases, the STEC can be converted to VTEC at IPP as follow:

$V T E C=S T E C \cos z^{\prime}$

(9)
$\sin ^{2} z+\cos ^{2} z=1$, and $z=90^{\circ}-\alpha$

- and an abliguity factor or mapping function:

$$
\begin{equation*}
\sin z^{\prime}=\frac{R_{E}}{R_{E}+h_{m}} \sin z \tag{10}
\end{equation*}
$$

$$
\cos \mathrm{z}^{\prime}=\left(1-\frac{R_{E}^{2} \cos ^{2} \alpha}{\left(R_{E}+h_{m}\right)^{2}}\right)^{1 / 2}
$$

RINEX (*.obs): An example

GPS TEC with instrumental biases

- The standard model for pseudorange recording for two frequencies f_{1} and f_{2} are as follows (Leick, 2004):

$$
\begin{aligned}
& P_{1, r}^{s}=p_{r}^{s}+c\left(\delta t_{r}-\delta t^{s}\right)-d_{t r o p}^{s}+d_{\text {ion } 1}^{s}+c\left(\varepsilon_{1}^{s}+\varepsilon_{1, r}\right) \\
& P_{2, r}^{s}=p_{r}^{s}+c\left(\delta t_{r}-\delta t^{s}\right)-d_{t r o p}^{s}+d_{\text {ion2 }}^{s}+c\left(\varepsilon_{2}^{s}+\varepsilon_{2, r}\right)
\end{aligned}
$$

Clock errors

Biases

- The difference between (11) and (12) is called the geometry free linear combination of pseudorange because of the actual range p is eliminated as

$$
\begin{align*}
P_{4, r}^{s} & =P_{2, r}^{s}-P_{1, r}^{s} \tag{13}\\
& =d_{\text {ion2 } 2}^{s}-d_{\text {trop }}^{s}+c(\underbrace{\varepsilon_{2}^{s}-\varepsilon_{1}^{s}}_{\mathbf{D C B}^{s}})+c(\underbrace{\varepsilon_{2, r}-\varepsilon_{1, r}}_{\mathbf{D C B}_{r}})
\end{align*}
$$

- Similar equations can be written for phase delay observations (Leick, 2004):

$$
\begin{aligned}
& L_{1, r}^{s}=\lambda_{1} \Phi_{1, r}^{s}=p_{r}^{s}+c\left(\delta t_{r}-\delta t^{s}\right)+\lambda_{1} \Phi_{\text {ion } 1, r}^{s}+\lambda_{1} \Phi_{\text {trop }, r}^{s}-c\left(\varepsilon_{1}^{s}+\varepsilon_{1, r}\right)+\lambda_{1} N_{1}^{s} \\
& L_{2, r}^{s}=\lambda_{2} \Phi_{2, r}^{s}=p_{r}^{s}+c\left(\delta t_{r}-\delta t^{s}\right)+\lambda_{2} \Phi_{\text {ion } 2, r}^{s}+\lambda_{2} \Phi_{\text {trop }, r}^{s}-c\left(\varepsilon_{2}^{s}+\varepsilon_{2, r}\right)+\lambda_{2} N_{2}^{s}
\end{aligned}
$$

$$
N_{1}{ }^{s} \text { and } N_{2}^{s} \text {, denote the initial phase ambiguity of } f_{1} \text { and } f_{2}
$$

- The difference between (14) and (15) is called the geometry free linear combinations of phase delay and is given as

$$
\begin{array}{r}
L_{4, r}^{s}=\lambda_{1} \Phi_{1, r}^{s}-\lambda_{2} \Phi_{2, r}^{s}=\lambda_{1} \Phi_{\text {ion } 1, r}^{s}-\lambda_{2} \Phi_{\text {ion } 2, r}^{s}+c\left(D C B^{s}\right)+c\left(D C B_{r}\right)+\Delta N^{s} \tag{16}\\
\Delta N^{s}=\lambda_{1} N_{1}^{s}-\lambda_{2} N_{2}^{s}
\end{array}
$$

- Using the approximation given by Liao (2000) and Leick (2004):

$$
\begin{equation*}
d_{\text {ion }, r}^{s}=-\Phi_{\text {ion }, r}^{s} \frac{c}{f} \approx A \frac{S T E C_{r}^{s}}{f^{2}}, \quad A=40.3 \mathrm{~m}^{3} / \mathrm{s}^{2} \tag{17}
\end{equation*}
$$

- Using equation (17) in equations (13) and (16), the expressions for the geometry free combinations are obtained as follows (Leick, 2004; Komjathy, 1997; Nayir, 2007):

$$
\begin{align*}
& P_{4, r}^{s}=A\left(\frac{f_{1}^{2}-f_{2}^{2}}{f_{1}^{2} f_{2}^{2}}\right) S T E C_{r}^{s}-c\left(D C B^{s}-D C B_{r}\right) \tag{18}\\
& L_{4, r}^{s}=A\left(\frac{f_{1}^{2}-f_{2}^{2}}{f_{1}^{2} f_{2}^{2}}\right) S T E C_{r}^{s}-c\left(D C B^{s}-D C B_{r}\right)+\Delta N^{s} \tag{19}
\end{align*}
$$

- STEC values for each satellite and receiver pair can be obtained from (19) as

$$
\begin{equation*}
\operatorname{STEC}_{r}^{s}(n)=\frac{1}{A}\left(\frac{f_{1}^{2} f_{2}^{2}}{f_{1}^{2}-f_{2}^{2}}\right)\left[P_{4, r}^{s}(n)+c\left(D C B^{s}-D C B_{r}\right)\right] \tag{20}
\end{equation*}
$$

n is sample time ($1 \leq \mathrm{n} \leq \mathrm{N}$), for 24 h with data recorded every 30s, N = 2880.

How to solve $\Delta \mathrm{N}^{\mathrm{s}}$ or STEC computed using phase delay?

- One method can be employed is leveling or fitting of L_{4} to P_{4} by defining a baseline for each connected arc of phase measurements (Lanyi and Roth, 1988; Otsuka et al., 2002):

$$
\begin{equation*}
B^{s}=\frac{1}{N_{m e}} \sum_{n_{m e}=1}^{N_{m e}}\left(P_{4, r}^{s}\left(n_{m e}\right)-L_{4, r}^{s}\left(n_{m e}\right)\right) \tag{21}
\end{equation*}
$$

where $N_{m e}$ is time duration of total samples, and $n_{m e}$ is the time index of the samples in the connected phase arc.

- The STEC now can be expressed as follow:

$$
\begin{equation*}
\operatorname{STEC}_{r}^{s}(n)=\frac{1}{A}\left(\frac{f_{1}^{2} f_{2}^{2}}{f_{1}^{2}-f_{2}^{2}}\right)\left[B^{s}+L_{4, r}^{s}(n)+c\left(D C B^{s}+D C B_{r}\right)\right] \tag{22}
\end{equation*}
$$

Now STEC can be computed using (20) or (22). The STEC can be converted to VTEC using (9).

- Similar equations can be written for phase delay observations (Leick, 2004):

$$
\begin{aligned}
& L_{1, r}^{s}=\lambda_{1} \Phi_{1, r}^{s}=p_{r}^{s}+c\left(\delta t_{r}-\delta t^{s}\right)+\lambda_{1} \Phi_{\text {ion } 1, r}^{s}+\lambda_{1} \Phi_{\text {trop }, r}^{s}-c\left(\varepsilon_{1}^{s}+\varepsilon_{1, r}\right)+\lambda_{1} N_{1}^{s} \\
& L_{2, r}^{s}=\lambda_{2} \Phi_{2, r}^{s}=p_{r}^{s}+c\left(\delta t_{r}-\delta t^{s}\right)+\lambda_{2} \Phi_{\text {ion } 2, r}^{s}+\lambda_{2} \Phi_{\text {trop }, r}^{s}-c\left(\varepsilon_{2}^{s}+\varepsilon_{2, r}\right)+\lambda_{2} N_{2}^{s}
\end{aligned}
$$

$$
N_{1}{ }^{s} \text { and } N_{2}^{s} \text {, denote the initial phase ambiguity of } f_{1} \text { and } f_{2}
$$

- The difference between (14) and (15) is called the geometry free linear combinations of phase delay and is given as

$$
\begin{array}{r}
L_{4, r}^{s}=\lambda_{1} \Phi_{1, r}^{s}-\lambda_{2} \Phi_{2, r}^{s}=\lambda_{1} \Phi_{\text {ion } 1, r}^{s}-\lambda_{2} \Phi_{\text {ion } 2, r}^{s}+c\left(D C B^{s}\right)+c\left(D C B_{r}\right)+\Delta N^{s} \tag{16}\\
\Delta N^{s}=\lambda_{1} N_{1}^{s}-\lambda_{2} N_{2}^{s}
\end{array}
$$

- Using the approximation given by Liao (2000) and Leick (2004):

$$
\begin{equation*}
d_{\text {ion }, r}^{s}=-\Phi_{\text {ion }, r}^{s} \frac{c}{f} \approx A \frac{S T E C_{r}^{s}}{f^{2}}, \quad A=40.3 \mathrm{~m}^{3} / \mathrm{s}^{2} \tag{17}
\end{equation*}
$$

Satellite elevation angle

Convert DAT (binary format) to RINEX using TEQC for *. O and *.n

Go through if the GPS data from the internet (e.g. SOPAC)

Convert RINEX to mat/ascii files (s1|1, s1|2, s1c1, s1p2, s1eph, s1epo, s1head, and s1log)

Use the rinex2mat.m with rinex_o.exe and rinex_n.exe

Determination of the elevation angle (θ) based on WGS84 frame

- The formula for calculation elevation angle is given as

$$
\left.\theta(x, y, z, t)=\sin ^{-1}(u p \bullet V)\right)
$$

(4)

with

$$
V=\left[X_{k} / D(t, n s a t) ; Y_{k} / D(t, n s a t) ; Z_{k} / D(t, n s a t)\right]
$$

$$
D(t, \text { nsat })=\left(\left(X_{k}-X_{r}\right)^{2}+\left(Y_{k}-Y_{r}\right)^{2}+\left(Z_{k}-Z_{r}\right)^{2}\right)^{\frac{1}{2}}
$$

$$
u p=\left[X_{r} / R_{r} ; Y_{r} / R_{r} ; Z_{r} / R_{r}\right]
$$

$$
R_{r}=\left(X_{r}^{2}+Y_{r}^{2}+Z_{r}^{2}\right)^{\frac{1}{2}}
$$

where
V is vector position of each satellite at any given time, up is unit vector at the receiver position,
$D(t, n s a t)$ is geometry range 'topocentric' between receiver and n satellite view at given time t.

TEC for selected stations in Antarctic and Arctic

Submitted to IJRS (2012)

DOI: 10.3844/ajassp.2012.894.901

Another TEC for selected stations in Antarctic region

Diurnal TEC variation at derived from GPS, Ionosonde and IRI2000 model

Diurnal TEC variation at Brussels

Real-time Global Map TEC

09/14/12
08:35 UT
Ionospheric TEC Map

http://iono.jpl.nasa.gov//latest_rti_global.html

TEC between the hemispheres $(21 / 09 / 2009)$

TEC data use for aurora study

GPS TEC variations in Polar Regions

What is aurora?

Auroras are usually observed at night and are commonly visible between 65 to 72 degrees north and south latitudes, which place them in a ring just within the Arctic and Antarctic circles.

Spectrum of sun emission

Intermittent spectrum for the aurora (Sato, 2009)

Auroral emission spectrum

The 'color' depending on the amount of energy absorbed and latitudes.

Geomagnetic activity response

- Magnetic measurements from ACE spacecraft and ground geomagnetic activity (IMF B_{y} and B_{z}).
- The disturbance seen at 20:00 UT on 20 Sep ~ 07:00 UT on 21 Sep 2011

Aurora activity on 21 Sep 2009

- Looking at the time from 00:47:54 UT to 00:50:14 UT between TJOR and SYOG.
- It is seen that four east-west aligned spiral-like auroral arcs moving eastward in both ASC field of views (FOVs) and each of them had almost a similar form between TJOR and SYOG.

Aurora breakup at conjugate point

Keogram - GPS TEC

- The conjugate auroras in the late stage of the substorm (after 00:45 UT) between All-sky CCD camera and keogram shows similar features.
- TEC enhancement during a weak substorm can be understood by the enhancement of electron density in the E- and F-regions created by the precipitating auroral electrons associated with the auroral activity.

Height of Aurora

1000 km

300 km

80 km
50km
35 km

15 km

TEC Products

Several products are now available to estimate the TEC every where and at any time.

- Global Ionospheric Maps (GIM): The International GNSS Service (IGS) Analysis Centre (http://igscb.jpl.nasa.gov/components/prods.html) provides VTEC maps. VTEC maps are global maps modeled by using up to 250 globally distributed GNSS stations and using TEC interpolation using spherical harmonics (e.g. Schaer et al., 1998). These maps are estimated every two hours on a $2.5^{\circ} / 5^{\circ}$ grid. The CODE Analysis Centre Global Ionospheric Map (GIM), available at ftp://ftp.unibe.ch/aiub/CODE/).
- Klobuchar model: The Klobuchar model (Klobuchar, 1987) is the broadcast Ionospheric Correction Algorithm (ICA) implemented in the GPS system. It is designed to correct for approximately 50% of the ionospheric range delay in GPS measurements . It predicts the VTEC at a given time above a given location.
- IRI 2007 model: The International Reference Ionosphere (IRI)
(http://ccmc.gsfc.nasa.gov/modelweb/models/iri_vitmo.php) .This an empirical model based on a wide range of ground and space data (e.g. Bilitza and Reinisch, 2008). It gives monthly averages of electron density, ion composition ($\mathrm{O}^{+}, \mathrm{H}^{+}, \mathrm{N}^{+}, \mathrm{He}^{+}, \mathrm{O}^{+}{ }_{2}, \mathrm{NO}^{+}$and Cluster ${ }^{+}$), ion temperature and ion drift in the altitude range $50-1500 \mathrm{~km}$ in the non-auroral ionosphere.
- Nequick model: This empirical model has been proposed for use in making ionospheric corrections in the single frequency operation of the European Galileo project. It is a quick-run model that allows calculation of the electron concentration at any given location in the ionosphere and thus the TEC along any ground-to-satellite ray-path by means of numerical integration (e.g. Hochegger et al., 2000).

