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Space Weather and Earth’s influence

Space weather is a program to observe, assess, and
forecast the space environment, which is very
important for constant operation of satellite systems

Space weather: study of and reliable communication / navigation purposes.

near-Earth space Not only the study of the Sun-to-Earth system, but also
environment studies of vertical coupling of the atmosphere /
\\ p—— 7 ionosphere is important. Regional observations
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200800k (LEO) Wy (especially in the low latitudes) are thus necessary.
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Atmosphere waves generated by convection activities
June — August, 2004
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Stratospheric QBO and mesospheric SAO show

Intensive correlation
(another vertical coupling with atmospheric waves)

Mesosphere 86-94km Zonal wind: MF radar in Tirunelveli, India

Monthly mean MLT zonal winds owver Tirunelveli
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Effect of lower atmosphere
to the region of space weather

Okinawa (Japan)
Lat.: 26N
Mag. Lat.: 16N

Atmospheric
density at ¥ A
400km ; =
altitutde )
E:
Distribution Jakarta
of land/sea (Indonesia)
Lat.: 6S
Mag. Lat.: 16S

OAtmospheric density at satellite height show latitudinal patter that
resembles to the Earth’s land/sea distribution

—>Regional study is important in the space weather studies.
OSouth of Japan and Jakarta are in similar geomagnetic latitudes.



dip equator

VHF Radars in the Low-Latitude Re

gion
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Jicamarca radar in Peru
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Equatorial Atmosphere Radar (EAR)

Antenna field (110m in diameter)
Located at Kototabang,
West Sumatra,
Indonesia
(0.20° S, 100.32° E)

Operated since 2001
under close .
collaboration between 47M
RISH and LAPAN

Hz, 100 kW, 560 Yagi antennas
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Fig. 3.8. (a) Typical equatorial plasma density profile in the evening local time period. (b)
Electrodynamics of the equatorial F region,.in which the density and conductivity profile is modeled
with a slab geometry, subject to a constant zonal eastward neutral wind.

Neutral wind in the evening Is
naturally eastward (with large
variabllity). This sets

| L

7 alme™  positive/negative charges at the

top/bottom side of F-region.
(Governing condition is J, = 0)



Vertical drift of equatorial ionosphere
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Fig. 3.2. Same as Fig. 3.1 but for the vertical drift component, which is positive for motions
upward. [After Fejer ef al. (1979). Reproduced by permission of the American Geophysical Union. ]
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Pre-reversal enhancement (PRE)
/Post sunset rise (PSR)
mechanism

Day Night
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Fig. 3.19. Simplified model of the F-region prereversaf enhancement driven by a uniform F-
region wind U. Near the sunset terminator the F-region dynamo E. is no longer shorted out and
approaches —U X B. This field maps to an equatorward E; in the E layer and drives a westward Hall
current Jo,. But if no current flows in the nightside E region, a negative polarization charge must
develop at the terminator, with £, as shown and J,, canceling J,, . This E, maps back to the F region
and causes first an upward (day) and then a downward (night) E X B plasma drift. [After Farley et
al. (1986). Reproduced with permission of the American Geophysical Union. ]




15t topic: Equatorial Spread-F (ESF)

Jicamarca VHF radar obs.

Jicamarce Verticali Backscatter af 3 mefers
March 21,1979
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Fig. 4.1. Range-time—intensity map displaying the backscatter power at 3-m wavelengths mea-
sured at Jicamarca, Peru. The gray scale is decibels above the thermal noise level. [After Kelley er
al. (1981). Reproduced with permission of the American Geophysical Union. ]
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F-region Field Aligned Irregularity (FAI) Echoes

from the EAR
Altitude-Time Intensity (ATI) plot
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ESF occurrence just after the sunset
(EAR results from Fukao et al., 2004)
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Figure 5. ATI plot for backscatter from the FAI observed in Beam 6 (to the south) from 1900 to 2300
LT on October 21, 2002. The thick solid curve shows the solar terminator.



EAR Multiple Beam Observation of ESF
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Motion of zonal structure of plasma bubbles
observed by EAR
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ESF and density depletion
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Fig. 4.3 (a) Simultaneous vertical rocket plasma density profile and backscatter map made with
the Altair radar on the island of Kwajalein. Dots show the rocket trajectory. [After Rino et al. (1981)
Reproduced with permission of the American Geophysical Union.] (b) Simulitaneous horizontal sat
cllite plasma density profile and backscatter map made with the Altair radar. [After Tsunoda ez al
(1982). Reproduced with permission of the American Geophysical Union. ] '



Dynamic spectrum of ESF density
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Fig. 4.5. Power spectrum of the plasma density detected along the rocket trajectory shown in
Fig. 4.3. Note that wave number here actually means inverse wavelength which equals k/2m. [After
Kelley et al. (1982). Reproduced with permission of the American Geophysical Union.]



Plasma Bubbles Observed with Airglow Imagers
at Conjugate Points

o November 12, 2001

o Sata 6300nm 1544 UT Darwin  630.0 nm
e N N

80

40

~
-k

-s,_:..gr\‘
S
SO
,Q—Jp -
Q

a0

¥

N
S
3
QD
«

@

B o oy Magnetic

EAR site” = P
-10-Imager . N2
Photometer L * A

GPS receiver

_30 _+ Darwin
I a 1".
:}, Imager | ﬂﬂﬂ“‘m
b
-30 hY
80 100 110 120 130 140 150
Long.

4 4 [ B 10
L .Count =1000} [ Count  (x1000)

: Plasma
i Bubble

Observation by Prof. Ogawa group

STE Lab., Nagoya Univ. 0T

Otsuka, Y., K. Shiokawa, T. Ogawa, and P. Wilkinson, A |
Geophys. Res. Lett., 29(15), 10.1029/2002GL015347, 2002. e

W L L E—
Shiokawa, K., Y. Otsuka, T. Ogawa, and P. Wilkinson, oV Magnetic :
. . Equator
Ann. Geophysicae, in press, 2004. e~ Darwin \Sat%\‘,



Equatorial Spread-F (ESF)

I

1] 2]

Density: high Geomagnetic field
A Jrrsnan.

Density: low > P

3] 4] lonosophere

\,»f\—gbAL\,\/\ 100 km
Development of plasma bubbles Meridional structure of plasma bubbles

— Local density-depleted regions at the bottomside of the
lonosphere develop and rapidly move upward to the topside
of the ionosphere.

— Rayleigh-Taylor instability is the mechanism.

— ESF occurs mainly near F-region sunset over the magnetic
equator.

— Meridionally elongated structure along the field line.

— Accompanied with small-scale irregularities that are
detectable by VHF radars.



Concept of Rayleigh-Taylor instability

Eqand J=OE,
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Fig. 4.8. (a) Schematic diagram of the plasma ané!og of the Rayleigh—Taylor instability in the
equatorial geometry. (b) Sequential sketches made from photos of the hydrodynamic Rayleigh—
Taylor instability. A heavy fluid is initially supported by a transparent lighter fluid.



Theory of ESF

« ESF is considered as Rayleigh-Taylor instability
occurring at the bottomside of the F-region.
Governing equations are,

% +V -Vn =0 (Fluid continuity for electron and ion)

V -J =0 (Current continuity)

where n, t, V, are density, time, and velocity vector.
J=V, - V, IS current vector.

« Generation of the polarization electric field E’ Iis
essential for stability of the plasma.



Theory of ESF

* Linear growth rate of R-T instability is then,
— g 4+ ExO
vi.L LB
g :gravity,v. :ion -neutral collision, E,, : eastward electrid field
where B : geomagneti c field, n, : background plasma density,

VRT

-1
L = [1 dnoj :Scale length of the density gradient

n, dz
R-T instability is unstable by gravity (term 1) and ambient
eastward electric field (term 2).

« Term 1 shows that small collision (= high ionosphere) is
favorable for the instability.

 Term 2 shows that electric field by storm initiates ESF.

* R-T instability may be generated by eastward or downward
component of the neutral wind.



Occurrence and variability of ESF

ESFs mainly occur after the local sunset preiod. This is
explained by post-sunset rise (PSR, or pre-reversal
enhancement (PRE)) that is the electromagnetic behavior
of the ionosphere at the sunset terminator. If so, why

ESF show large day-to-day variability. Large-Scale Wave
Structure (LSWS) is considered as a key to this problem.

Up

Nighttime Daytime

lonosphere

300 km

200 km
East WES’[

0 km 500 km 1000 km Fukao et al., 2006
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2"d topic: instabilities in the Equatorial
electrojet (or E-region)
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Fig. 3.16. Observed and computed eastward current density profiles near noon at the dip equator
off the coast of Peru in March 1965, normalized to a magnetic field perturbation of 100 nT at
Huancayo. Measured profiles are from Shuman (1970) (flight N/A #1), Maynard (1967) (flight
UNH-5), and Davis er al. (1967) (flights 14.170, 14.171, 14.174, and 14.176). The theoretical
profile is from Richmond’s (1973a) theory. [After Richmond (1973b). Reproduced by permission of
Pergamon Press. ]



FAI In the electrojet (Type 1)

Jicamarca VHF radar obs.
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Fig. 4.20. Series of Doppler spectra from the equatorial electrojet irregularities at different ele-

vation angles obtained at Jicamarca during a period of relatively strong scattering. The spectra are
normalized to a fixed peak value. {After Cohen and Bowles (1967). Reproduced with permission of
the American Geophysical Union.]



FAI In the electrojet (Type 2)

Jicamarca VHF radar obs.
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Fig. 4.21. Type 2 spectra measured at 50 MHz simultaneously at different antenna zenith angles.
The dashed lines indicate the average Doppler shifts. The geometry of the experiment is shown in
the top right panel. The results of the experiment, together with three theoretical curves for which a
sine dependence of the average phase velocity with zenith angle was assumed, are shown in the
battom right panel. [After Balsley (1969). Reproduced with permission of the American Geophysical
Union. ]
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Fig. 4.23. Sample of the 50-MHz backscatiering power profiles from the electrojet irregularities
measured with the large vertically directed incoherent scatter antenna at Jicamarca. Spread F echoes
contaminated the data between 0405 and 0550 and perhaps at 1900. [After Fejer et al. (1975).
Reproduced with permission of the American Geophysical Union. ]



Doppler shift of electrojet FAI echoes

JICAMARCA APRIL 10, 1981
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Fig. 4.24. Doppler shift spectrogram of the vertical backscatter signal measured at Jicamarca.
Each spectrogram is normalized to its own peak power. The power values are divided into nine
linearly spaced levels, with the darkest shades corresponding to the largest power values. Negative
Doppler velocities indicate downgoing waves. [After Kudeki er al. (1982). Reproduced with permis-

sion of the American Geophysical Union. ]
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Rocket experiment of electrojet FAI
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Fig. 4.27. Frequency-height sonogram of the horizontal component of the irregularities mea-
sured during the upleg of rocket 33.027 during strong electrojet conditions. This instrument had a
low-frequency roll-off (3 dB) at 16 Hz. The electron density profile (left) shows the presence of
large-scale irregularities. Both panels show nongeophysical “‘interference” above about 110 km.
[After Pfaff et al. (1988a). Reproduced with permission of the American Geophysical Union.}



Linear theory of the E-region FAI (1)

Linear theory of E-region FAI (Fejer, et al., 1975)

Growth rate

oV {(kvd)2 —k2C2:|-|— V,v. 1 dN

where @y [ Ay) L+y)° QY N dz

k :wavenumber, V, =V, -V, : velocity difference between electron and ion

C, :lon sound speed,y = g;";; . Ratio ion/electron collision to gyro frequency

From this we can infer two instabilities of two kinds.
1) Two-stream instability (related term 1 = Type 1) occurs when electrons
run through ions at faster speed than the sound speed, V, > (1+y)C,

This occurs mainly in the electrojet or limited conditions where intense
ambient electric field apply. Radar echo show Doppler frequency =~ C



Linear theory of the E-region FAI (2)

2) Gradient-drift instability (related term 2 = Type 2) occurs when intense
density gradient exists and some electric field (or neutral wind) is
applied. Radar echo shows following Doppler shift of

1 ExB W

V, = — +
l1+yv B 1+y

L

where U, is neutral wind component perpendicular to the geomagentic
field. As  is negligible (~0) above around 100km, FAI echoes show
ExB drift of plasma in the region. Below 100km consideration of the
neutral atmosphere is necessary.



Linear theory of the E-region FAI (3)

(@)  Two-stream instability
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(b)  Gradient-drift instability

Fig. 4.31. Schematic diagrams showing the linear instability mechanism in (a) the two-stream
process for nighttime conditions and (b) the gradient drift process for daytime conditions.



Mid-latitude E-region FAI

Earlier observations with the MU radar (Shigaraki, Japan)
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Mid-latitude E-region FAl

Earlier observations with the MU radar (Shigaraki, Japan)
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Horizontal structure of mid-latitude E-region FAI

MU radar + Frequency Agile Radar simultaneous obs.
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Observation areas for 12-beam observations of the MUR are distributed along the line as shown by the
numbers ‘1'-*12". The observation area of the FAR is shown by the point “F". The Multicolor Airglow
Imaging System (MAIS) from Tohoku University is located at the Kiso observatory as shown in the figure.

by assuming that they appear from a direction which is perpendicular to the geomagnetic field as determined

from the IGRF835 model. Note that the FAR data appear 2km higher than the MUR ones because of

possible additional system delay. In the FAR data at around 21:16 and 21:53 LT, vertically extended echoes
appeared as a result of range sidelobes of the 13-bit Barker coded pulse.
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F-region Medium-Scale Traveling
lonospheric Disturbance (MSTID)
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Summary

lonosphere lrregularity

— Irreqularities are driven by polarization electric filed that
arises from plasma-density variation & current continuity.

— Large range of scales: several meters to 100km.

ESF or plasma bubble

— Occur after equatorial F-region sunset. Also generated by
magnetic storms

— Understood by R-T instability, but seeding mechanism is
not fully understood.

E-region FAI

— Type 1 and 2 instabilities are well known. Type 2 are seen
In the mid-latitude region.

Coupling with the neutral atmosphere
— Vertical coupling of the Earth’s atmosphere is important.






Equatorial electrojet
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Fig. 3.14. Vertical profiles of daytime composition and plasma density (left) and conductivities
(right) for average solar conditions. [After Forbes and Lindzen (1976). Reproduced by permission of

Pergamon Press.]
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Fig. 4.29. Electric ficld observations of the two-stream waves for the upleg. The lower panels
show the raw dc-coupled data, above which is plotted the square root of the sum of the squares of
these waveforms. The upper panel shows a sonogram of these waves. (Note the change in scale of
the time axis.) An arrow indicates the onset of the strong burst of primary two-stream waves, [After
Pfaff e al. (1988b). Reproduced with permission of the American Geophysical Union. |



Figure title

t=1.28s

Fig. 4.35. Plasma density contours showing the development of the equatorial irregularities at

four selected times. The contour spacing is 2.5% of the ambient density, and the grid spacing is

1.5 m. [After McDonald er al. (1975). Reproduced with permission of the American Geophysical
Union. ]



E-region FAI experiment with MU radar
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» QP echoes (several minutes) appear after summer sunset period.
»Echo enhancements look to have slower variation of about ~1 hour.

Yamamoto et al., 1991



Equatorial Atmosphere Radar (EAR)

Location:
Kototabang,

West Sumatra,
Indonesia

(0.20° S, 100.32° E)
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Interactions between the Lower and Upper
Atmosphere over the Equatorial Region
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The equatorial atmosphere featured by : ?
<-Maximum input of solar radiation \/
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Interactions between the Lower and Upper
Atmosphere over the Equatorial Region

Temperature profile

Meridional Atmospheric Motions
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2001 .

2002.

2003 .

2004 .

2005.

2006.

2007.

2008 .

2009,

2010.

2011.

EAR Iong-period experiment

Wind measurement
_-I

—-_

EAR continues long-
period continuous
observations since June
2001. Most of them were
for wind measurement of
the troposphere and
stratosphere.

From July 2010, we shift
the observation mode to
more ionosphere studies
owing to the current
research program of

“Indonesia Space
_ o \ Weather”
" Jan Feb Mar Apr May Jun Jul Aug Sep Oect NX Dee

Continuous ionosphere measurement started in July 2010




Large Scale Wave Structure (LSWS)
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Figure 1. Plasma-density distribution measured during an HORIZONTAL DISTANCE
ST IGIEE SPRTARIIGS (N LSl TR DU SRR T ol Figure 3. Sketch showing amplification of wave structure

24 SIR s - q 9 .2 T S . : ( :
()p 24 July 1379 .bem een 0742:57 and 0803:20 UT [from and overhead measurements from four locations, labeled a,
Tsunoda and White, 1981]. b.c: and d

LSWS: Zonal structure of ionosphere with wavelength of ~500km
<-> Show good correlation with ESF event
O Plasma irregularity is proposed to support growth of LSWS.

O Observations are still very limited.

Tsunoda et al, 2005



Longitudinal distribution of ESF Fukao et al., 2006
I

Four regions of ESF (A. B. C. D) were

Case study on March 24, 2004 observed during 20-0 LT
. Echo Power (az: 180, ze: 23)
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owing to gravity waves.




Onset time and altitude range of ESF echoes

Yokoyama et al., 2004

Onset tim onset altitude and
set ume altitude range of echoes  spatial
local sunset apexsunset sgpkm  400km  500km interval [k

Oct. 13,2002 12 @3 -—- 500
Oct. 14,2002 15 L I 600
Oct. 17,2002 15 I II

Oct.20,2002 4p 15 I L

Oct. 21,2002 15 ) = /

I .+._. saas

Mar.25,2003 i@ ® —i 400

Apr. 7,2003 12 @ 16 L [ 400

Mar.23,2004 a @ 14 250

23 100

21 — 300

Mar.24,2004 23 100

23 200

23 350

Mar. 26,2004 17 @ 10 250

i@ 1 —

Apr. 1,2004 25 250

25 100

25 100

19 out of ~80 plumes were born within the fan sector



