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Objectives

Understanding of how the ionosphere aids HF radio
communication

How space weather causes variability in the ionosphere
and how that impacts HF communication

How to forecast HF relevant space weather and how to
minimise their impacts to HF users

How space weather impacts GPS positioning
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Formation of the lonosphere

EUV radiation from the solar
corona the main driver of

lonization
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Propagation of HF radio waves
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HF Applications

» Compared with VHF/UHF and Satellite
communications, HF Is an older technology, but
still plays an important role in aviation, maritime,
for remote regions and defence.

« The key advantage of HF over VHF/UHF is that
line of sight is not required. Networks of repeater
stations are used to allow over the horizon
VHF/UHF communication, however this
Infrastructure Is not present in all regions
(particularly over oceans and poles).



Reflection of HF Skywave

- Refractive index of
lonosphere Is a function of
electron density

« For f<f, radio waves are
reflected, f > f, waves will f<f, p
escape



Why Is Space Weather relevant to
HF radio?

» The useable frequencies for HF communication depends
on ionospheric conditions.

« Two way communication requires both users agree on
frequency to use in advance

 lonospheric conditions, and therefore useable frequencies,
vary due to space weather, so space weather forecasts on
long and short term timescales are required for frequency
planning and management.



lonosondes

 |mportant instrument
for characterising the
(bottomside)
lonosphere.

« Transmits HF radio
pulses over a wide
frequency range and
records time until echo s
received (if at all). IPS lonosonde at Casey,

Antartica
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Typical lonogram
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Propagation modes - simple modes
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Propagation modes - complex modes
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Relationship between vertical and
oblique propagation
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Why do we care about the Maximum
Useable Frequency (MUF)?

* If high frequencies are in danger of
escaping the ionosphere and not reflecting
to receiver, why not just always use low
frequencies to be safe?



Low Frequencies are Absorbed

Any radio wave not propagating through a vacuum suffers absorption
loss.

Absorption is higher in high density region (lower altitude), so we
want to minimise the time spent at low altitude.

Frequencies below absorption limiting frequency (ALF) cannot be
used.



Frequency limits of HF sky waves

f> MUF
(frequency too high)

f = MUF

f < MUF




lonospheric Disturbance

« Space weather events such as X-ray flares,
CMEs and CIRs can cause significant
lonospheric disturbances

» There are also several types of disturbance
that can commonly occur outside of large
space weather events
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Spread F

Spread F is more prevalent at equatorial (lower than 20°) and higher
(greater than 40°) geomagnetic latitudes;

At equatorial latitudes, spread F is more likely at night, at the
equinoxes and in summer.

At higher latitudes, spread F is more prevalent at night and the
equinoxes;

Spread F is more likely when MUFs decrease;

Spread F can cause high flutter fading rates in HF communications and
disruptions to satellite communications and navigation from trans-
lonospheric scintillation.



Sporadic E
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The electron density of sporadic E can sometimes be as great or greater than the
electron density of the F2 region



Blanketing Sporadic E
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Fading - Sporadic E

F region

E region sporadic E

Sporadic E formation (night or day) may result in communications via the F region being
interrupted if the sporadic E electron density is high enough to reflect the radio wave.



foF2 Variation

« foF2 varies with
» Location
» Time of day
» Season
» Solar Cycle



Time of Day Variation

* lonospheric density depends on balance of
electron production and loss, with electron
transport playing an important role.

At nightime, no ionosing flux so electron
density and hence foF2 decreases



Seasonal Variation

« Would you expect foF2 to be higher in summer or winter?



Seasonal Variation

Would you expect foF2 to be higher in summer or winter?

lonoising flux is higher during summer, so we might
expect higher foF2. However, theromospheric chemistry
changes also occur changing re-combination rate and
transport processes are different. The details are complex.

Daytime winter foF2 can be higher than summer

Nighttime winter foF2 is lower than summer



Solar Cycle foF2 Variation
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Space Weather Effects

X-ray flares
Geomagnetic Storms

These often but not always have a common cause (i.e. a
large flare with associated CME) but the effects are
different



X-ray Flares and sudden 1onospheric
disturbance
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Why do X-ray flares cause fadeouts?

« Huge increase in X-ray intensity produces
significant 1onisation at much lower
altitudes than normal, in the D layer (~ 80-
100Km)

» The gas density i1s much higher in the D-
region, so propagating radio signals suffer
from greater collisional loss.
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LATITUDE

Fadeout Map
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Geomagnetic Storms

 Large geomagnetic storms can have a significant
Impact on the ionosphere

» The more poleward the location, the more
significant the effects.

« The local time of day of the geomagnetic activity
plays an important role in the ionospheric
response.
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Hands on

Put all data, README.txt and *.jar files in the
same directory.

For Windoze/Mac, double click wdc_cid.jar,
for *NIX type java —jar wdc_cid.jar

Change date to d:31, m:05, y:03 (i.e. 315t of
May 2003).

Large list of stations in menu, you have data for
stations Darwin, Brisbane and Hobart.

Some questions to investigate vi Hobart )’

> Look at Brisbane and Darwin between 02-
03UT. What event do you observe? Do you
see this at Hobart? Why?

> Look at Hobart. Do you see any Spread F
or Sporadic E? If so when?

» Try scaling some foF2 values at the same
time each hour over the day. How does it
vary? What time do you think is local
sunrise and sunset at each location?

Brishane



HF Prediction, modelling and
forecasting service

IPS uses the T-index, which uses decades of ionospheric
maps to determine the mean expected conditions given the
location, time of day, season and T index

Forecast monthly T index, based on sun-spot number
predictions. This allows long term frequency management

for customers.

The T-index i1s used by our HF circuit prediction tool,
ASAPS (Advanced Stand Alone Prediction Tool) to
predict the best HF frequencies for a given circuit.



HF Circuilt Prediction
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Nowcast Corrections

Real time foF2 from lonosondes T index difference map
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3-day Forecast

 Forecasts are generally more useful than
nowecasts (if they are correct!)

* |PS issues forecasts for 3 days ahead each
day at 2330UT



GPS TEC Real Time Map

lonospheric Pierce Points TEC map composed of a
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GPS TEC Real Time Map

GPS Broadcast TEC model Real time TEC map
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GPS TEC Real Time Map

Real time estimate of the contribution of the ionosphere to single
frequency GPS positioning error.
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Ground Based Augmentation
Systems
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Simplified lonosphere Wave Front Model:
a ramp defined by constant slope and width
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