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1.  Motivation 



Geosynchronous orbit 
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• Indonesia has owned Palapa series satellites since the mid 1970s, 

for almost 4 decades 

• All Palapa satellites were/are located at geosynchronous orbit 

• Geosynchronous orbit is an attractive place to park satellites  

• stable orbit – save fuel 

• fixed geographical coverage 

PALAPA-B 

Satellites 



PALAPA-C 

PALAPA-C Coverage 

launched in 1996 



Geosynchronous orbit 
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• Indonesia has owned Palapa series satellites since the mid 1970s, 

for almost 4 decades 

• All Palapa satellites were/are located at geosynchronous orbit 

• Geosynchronous orbit is an attractive place to park satellites  

• stable orbit – save fuel 

• fixed geographical coverage 

• space weather risk: spacecraft charging, noise, etc.  

PALAPA-B 

Satellites 
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2.   Spacecraft charging 



Space weather effect: Spacecraft charging 



The Plasma Sheet of the Earth 

Plasma sheet poses spacecraft charging risk to satellites at 

geosynchronous and low-altitude polar orbits: 

• plasma sheet plasma is relatively hot 

• the satellites would be be in the dark (Earth’s shadow) 

Geosynchronous orbit = 6.6 

RE 

Lunar orbit = 60 RE 

The 

transport 

pathways in 

the plasma 

sheet are 

not well 

understood. 



Charging Levels in the Plasma Sheet 

Remember: 

darkness is worse 

than sunlight! 

Borovsky [2011] 
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spacecraft charging in the darkness vs. sunlight 



Solar-Cycle Dependence of the 

Charging Environment 

The high-speed streams of the declining phase bring the most-severe hazards. 

Borovsky [2011] 



energetic electrons and ions can penetrate and damage the 

instruments on board 



Space weather risks at geosynchronous orbit 

• many geosynchronous satellites have terminated/died 

• most were due to spacecraft charging 
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Charging occurs after Te exceed some threshold  
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Spacecraft charging on Bastille Day, 2000  

Lai and Tautz [2006] 

Spacecraft 

potential is 

about 3 times 

larger than that 

during the 

peak of HSS 

season  
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3. Researching geosynchronous orbit 

space environment environment 



Researching geosynchronous 

orbit environment 

18 

• Bad news: spacecraft charging risk 

• Good news:  

• lots of data at geosychronous orbit 

• researching geosynchronous orbit environment does not 

have to be expensive 

• 3 events: 

• 1997 April 11 13:00 – 17:00 UT 

• 1997 Jul 1 18:00 – 21:00 UT 

• 1996 May 12 21:00 – 24:00 UT 

• CDAWEB: http://cdaweb.gsfc.nasa.gov/ 

• Select: OMNI, GOES, and LANL data 

  
Remember: if you know what you are doing, it is not research! 

http://cdaweb.gsfc.nasa.gov/
http://cdaweb.gsfc.nasa.gov/
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NASA  CDAweb  

 1.  

http://cdaweb.gsf

c.nasa.gov/istp_p

ublic/ 
2.  Select 

the 

satellites: 

OMNI, 

GOES, 

LANL 
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select:  

G8_K0_MAG, 

G9_K0_MAG, 

L9_K0_MPA, 

L0_K0_MPA, 

L4_K0_MPA, 

L1_K0_MPA, 

OMNI_HR0_1

MIN 



GSM coordinate system 
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GEOCENTRIC SOLAR MAGNETOSPHERIC 

SYSTEM (GSM)   

• The geocentric solar magnetospheric system (GSM), as 

with both the GSE and GSEQ systems, has its X-axis 

from the Earth to the Sun.  

• The Y-axis is defined to be perpendicular to the Earth's 

magnetic dipole so that the X-Z plane contains the dipole 

axis (positive is duskward).  

• The positive Z- axis is chosen to be in the same sense as 

the northern magnetic pole.  
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1997 April 11 13:00 – 17:00 UT 
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Magnetosphere 
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1997 Jul 1 18:00 – 21:00 UT 
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G8 LT 

= (285 

– 

360)/15 

= UT - 

6 hr 

G9 LT 

= (225 

– 

360)/15 

=UT  - 

9 hr 
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Polar UVI 
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1996 May 12 21:00 – 24:00 UT 
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G8 LT 

= (285 

– 

360)/15 

= UT - 

6 hr 

G9 LT 

= (225 

– 

360)/15 

=UT  - 

9 hr 
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Two types of studies 
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1. Case study: examine carefully a small number of 

events.   

• investigate how long it takes for the 

geosynchronous parameter to respond to changes in 

the solar wind 

2. Statistical study: examine a large number of events 

• least square fit of solar wind dynamic pressure vs. 

geosynchrnous Bz 
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• Geosynchronous satellites can provide rich 

datasets for space weather and space physics 

• Could we get the next generation Palapa 

satellite to provide magnetic field and other 

scientific data? 
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4.  A space weather tool: Neural 

networks 

a. HF backscatters from ionospheric 

irregularities 

b. Kp forecast models 
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The underlying physics of many space objects and phenomena is often 

complex and not well understood, but progress can be achieved through the 

use of advanced or even standard machine learning and artificial intelligence 

principles 
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based 

system 
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learning 

or AI  

based 

system 
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Neural Networks 

• A NN architecture with 1 hidden layer [a class of multi-layer 
feedforward network (MLFN)] 

A class of NN with 0 hidden layer is called perceptron 

The intelligence lies 
in the connections 

between the nodes  
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Neural 

Network 

algorithm 

Feed 

forward 

step 



41 

Neural 

Network 

algorithm 

Feed 

forward 

step 
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Neural 

Network 

algorithm 

Back-

propagation 

step 
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Neural 

Network 

algorithm 

Back-

propagation 

step 



Two applications of neural 

networks 

44 

a. HF backscatters from ionospheric irregularities 

(clutters) 

b. Kp forecast models 

Could NN be used to predict spacecraft charging and 

other parameters/phenomena at geosynchronous orbit? 
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4.a  HF backscatters from ionospheric 

irregularities (clutters) 
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Johns Hopkins Goose Bay HF radar 

Goose Bay high-frequency (HF) radar: 

• operated by the Johns Hopkins University Applied Physics Lab 

• study the ionosphere E and F layers, 100 – 500 km in altitude 

• radar descriptions/characteristics [Greenwald et al., 1985]: 

– Operating frequencies: 8 – 20 MHz 

– 16 log-periodic antennas that are electronically steerable 

– 16 beams with each beam typically consisting of 75 ranges 

– Detects backscattered signals from ionospheric irregularities 
or clutter (“soft target”) 

– Backscattered signal is proportional to n2 [Walker et al., 
1987] 
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Goose Bay HF radar 

• Goose Bay HF radar is part of the worldwide SuperDARN radar 
network [Greenwald et al., 1995] 
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Halley Bay, Antartica Kapuskasing, Ontario, Canada 

Stokkseyri, Iceland 
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Goose Bay HF radar 

• One of the 
most popular 
products of the 
SuperDARN 
radars is the 
ionospheric 
convection 
pattern 



50 

Goose Bay HF radar analysis 

• A lot of processing is required to get from the raw 
radar signals to the finished products, e.g. 
ionospheric convection patterns 

• The radar uses a multi-pulse technique to determine 
a complex autocorrelation function (ACF) at each 
range gate [Farley, 1972; Greenwald et al., 1985] 

• Processing ACFs could take a lot of time, especially 
in the early days when computers were slow 

• From these ACFs, several parameters can be 
extracted to derive physically important quantities  

• For example, ACFs => Doppler velocity => 
convection patterns   
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ACF 

Examples of 
usable and 
unusable ACFs 

usable unusable 

= real 

= imaginary 

Wing et al. [2003] 
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objective 

• A proof-of-concept study to investigate the capability 
of NNs to classify usable and unusable ACFs 

 

. . 

. 

ACF function 

containing 17 

pairs of real 

and 

imaginary 

data points 

(34 points) 

0 = unusable 

1 = usable 

NN 

based 

system 

INPUT 

OUTPUT 
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Data set 

• 350 ACFs from Goose Bay radar database 1986-1987  

• 200 ACFs randomly selected for the training data set and 150 for 
the test data set 

• Each ACF contains 17 pairs of real and imaginary data points 
(M=17), which are the inputs to NN 

 

The dataset has been widely distributed and is known as the Johns 

Hopkins ionosphere radar dataset in the machine learning 

community  
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Results 
Examined the following NN architectures: 
•MLFN - NNs with 1 hidden layer and 3, 5, 8, 10, and 15 hidden nodes 
•Perceptrons - (NNs with 0 hidden layer): linear and non-linear 

NN learning curve 

Wing et al. 

[2003] 
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4.b  Kp forecast models 



Bhattacharyya and 

Basu [2002] 

geographic  lat = 18 deg N 
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Pandey and Dashora [2005] 

Udaipur (mlat = 15.3 deg) near EIA 

nightside 
dayside 
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Background and Motivations for 
developing Kp forecast models 

• Moderate and high activities are notoriously difficult to predict 
[Joselyn, 1995]. 

• Real-time magnetometer data can be used to calculate nowcast 
Kps, which could improve the accuracy of the forecast Kps.  

 

Why Kp? 

• Kp is one of the most popular global indices.  

• Kp has been playing significant roles in space weather, e.g., 
satellite drags, satellite communication, etc. 

• Many magnetospheric and ionospheric models require Kp as an 
input parameter, e.g., T89 magnetic field model, Fok ring 
current-radiation belt model, MSFM, OVATION, etc. 

• The long uninterrupted Kp record since 1932 makes it ideal for 
studying solar-wind magnetosphere interactions, e.g., the solar 
cycle effects, etc. 
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The APL Kp forecast models  

. . 

. 
Solar wind, 

IMF, 

[previous Kp] 

Normaliz

ed Kp 

NN 

based 

system 

INPUT 

OUTPUT 
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Summary and Conclusion  

• In order to satisfy different needs and operational constraints, we 
developed 3 Kp forecast models: 
1. APL model 1 

• Input: ACE solar wind n, Vx, IMF |B|, Bz, and nowcast Kp 
• Output: ~1-hr ahead Kp forecast 

2. APL model 2 
• Input: same as model 1 
• Output: ~4-hr ahead Kp forecast 

3. APL model 3 
• Input: ACE solar wind n, Vx, IMF |B|, and Bz 
• Output: ~1-hr ahead Kp forecast 

 
• Note: a very accurate nowcast Kp algorithm [Takahashi et al., 2001] can 

be used as an input to APL models 1 and 2.  
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Summary and Conclusion  
Boberg et al. [2000] 
Operational at Lund Obs. 

Operational at NOAA/AF 

APL model 1 APL model 3 
(purely 
driven by 
solar wind)  

APL model 2 
(4 hr ahead 
forecast) 

Univ. of Sheffield 

Wing et al. [2005] 
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Predictive Model Performance 

TSS 
xw yz

x y







 zw










True Skill Statistics (TSS): 
 

 

  
  
Gilbert Skill (GS): 
 

 

  
 
GS ignores w (“correct rejection”). 
Ch = chance hits = (probability of Y events to occur) X 

(number of Y events forecasted) 
  

 

GS 
xCh

xCh





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





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
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


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Ch 
xy









x yzw









xz













For TSS and GS: 
Perfect forcecast  = 1  
Random forecast = 0  

The figures show the skill scores for Costello 

Neural Network (NN) model over 2 solar cycle 

periods.  They show that the model performance 

has a solar cycle variation.  The model performs 

better near solarmax than solarmin for active times 

(Kp > 3).  The input parameters to the model are: 

solar wind V, IMF |B|, IMF Bz, and the previous 

Kp predictions of the model.   

 

The skill scores are defined below (Detman and Joselyn, 1999). 

 

The skill scores are defined below  

(Detman and Joselyn, 1999). 

 

Y N 

Y x y 

N w z 
Observed 

Forecast 
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Summary and Conclusion  

True Skill Statistic (TSS) 
[Detman and Joselyn, 1999] 
based on data spanning over 2 
solar cycles. 

Note: for comparisons with other 
published results, r is calculated over 
all Kp ranges and therefore, this 
figure understates the dramatic 
improvements the APL Kp models 
obtain for active times, Kp > 4. 

Wing et al. [2005] 
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5.  Summary 

• Geosynchronous orbit environment is relevant for many satellites, 
including Palapa 

• Geosynchronous orbit: 

• attractive place to put a satellite 

• stable – save fuel 

• fixed geographical area coverage 

• has space weather risks 

• Space weather and space physics research do not have to be expensive 

• a laptop/desktop computer 

• internet connection: CDAWeb provides free online database 

• Solar wind: OMNI  

• Geosynchronous orbit: GOES, LANL data 

• Space weather forecast modeling with neural networks 

• HF backscatters from ionospheric irregularities (clutters) 

• Kp forecast models 

 



Questions 
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• Could the next generation Palapa satellite provide magnetic 

field and other scientific data for space weather and space 

physics research? 

• Could we use NN to predict spacecraft charging and other 

parameters at geosynchrnous orbit? 
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