SWI & MAGDAS SCHOOL

Wisma Pandawa, West Java, Indonesia 17-23 September 2012

Solar Magnetohydrodynamics

Kanya Kusano

Solar-Terrestrial Environment Laboratory Nagoya University

Dynamic Sun

Outlook

- Introduction to Magnetohydrodynamics
 - Alfven's theorem (frozen-in)
- Magnetic Structure in Solar Active Region
 - Solar magnetic field
 - MHD equilibrium
 - Magnetic helicity and free energy
 - Force-free field model
- Dynamics in solar coronal magnetic field
 - Solar eruptions (flare and CME)
 - Magnetic reconnection
- What triggers the onset of solar eruptions? [NEW]
 - Ensemble 3D MHD simulation study
 - Hinode Observations
 - Discussion: Predictability of solar eruptions

Introduction to MHD

Hannes Alfvén

Plasmas

Plasma Dynamics

$$\hat{F}_{s}(\mathbf{r}, \mathbf{v}, t) = \sum_{j=1}^{\infty} \delta[\mathbf{r} - \mathbf{r}_{j}(t)] \delta[\mathbf{v} - \mathbf{v}_{j}(t)], \quad \hat{K}_{s}(\mathbf{r}, \mathbf{v}, t) = \frac{q_{s}}{m_{s}} [\hat{\mathbf{E}}(\mathbf{r}, t) + \mathbf{v} \times \hat{\mathbf{B}}(\mathbf{r}, t)]$$
where $\delta[\mathbf{a}] = \delta(a_{x})\delta(a_{y})\delta(a_{z})$

$$\hat{\mathbf{J}}_{s}(\mathbf{r},t) = \sum_{s} q_{s} \int \mathbf{v} \hat{F}_{s}(\mathbf{r},\mathbf{v},t) d\mathbf{v}$$
$$\hat{\sigma}_{s}(\mathbf{r},t) = \sum_{s} q_{s} \int \hat{F}_{s}(\mathbf{r},\mathbf{v},t) d\mathbf{v}$$

$$\nabla \times \hat{\mathbf{E}}(\mathbf{r},t) = -\frac{\partial \hat{\mathbf{B}}(\mathbf{r},t)}{\partial t}$$
$$\nabla \times \hat{\mathbf{B}}(\mathbf{r},t) = \frac{1}{c^2} \frac{\partial \hat{\mathbf{E}}(\mathbf{r},t)}{\partial t} + \mu_0 \hat{\mathbf{J}}(\mathbf{r},t)$$
$$\nabla \cdot \hat{\mathbf{B}}(\mathbf{r},t) = 0$$
$$\nabla \cdot \hat{\mathbf{E}}(\mathbf{r},t) = \frac{1}{\varepsilon_0} \hat{\sigma}_e(\mathbf{r},t)$$

 $F_{s}(\mathbf{r}, \mathbf{v}, t) = \langle \hat{F}_{s}(\mathbf{r}, \mathbf{v}, t) \rangle = \int d\{\mathbf{r}_{i}, \mathbf{v}_{i}\} D(\{\mathbf{r}_{i}, \mathbf{v}_{i}\}; t) F_{s}(\mathbf{r}, \mathbf{v}, \{\mathbf{r}_{i}, \mathbf{v}_{i}\})$ ensemble average

$$\mathbf{J}_{s}(\mathbf{r},t) = \sum_{s} q_{s} \int \mathbf{v} F_{s}(\mathbf{r},\mathbf{v},t) d\mathbf{v}$$
$$\sigma_{s}(\mathbf{r},t) = \sum_{s} q_{s} \int F_{s}(\mathbf{r},\mathbf{v},t) d\mathbf{v}$$

$$\nabla \times \mathbf{E}(\mathbf{r},t) = -\frac{\partial \mathbf{B}(\mathbf{r},t)}{\partial t}$$
$$\nabla \times \mathbf{B}(\mathbf{r},t) = \frac{1}{c^2} \frac{\partial \mathbf{E}(\mathbf{r},t)}{\partial t} + \mu_0 \mathbf{J}(\mathbf{r},t)$$
$$\nabla \cdot \mathbf{B}(\mathbf{r},t) = 0$$
$$\nabla \cdot \mathbf{E}(\mathbf{r},t) = \frac{1}{\varepsilon_0} \sigma_e(\mathbf{r},t)$$

Macroscopic Variables

the n-th moment in velocity space

$$\mathbf{M}^{n} = \int \mathbf{v}^{n} F_{s}(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{n}_{s}(\mathbf{r}, t) = \mathbf{M}^{0} = \int F_{s}(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\Gamma_{s}(\mathbf{r}, t) = \mathbf{M}^{1} = \int \mathbf{v} F_{s}(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{u}_{s}(\mathbf{r}, t) = \overline{\mathbf{v}}_{s}(\mathbf{r}, t) = \Gamma_{s}(\mathbf{r}, t) / \mathbf{n}_{s}(\mathbf{r}, t)$$

$$\mathbf{c} = \mathbf{v}_{s} - \mathbf{u}_{s} \text{ velocity fluctuation } (速度揺らぎ)$$

$$\widetilde{\mathbf{P}}(\mathbf{r}, t) = \mathbf{m} M^{2} - \mathbf{m} \int \mathbf{c} \mathbf{c} \mathbf{F} d\mathbf{v}$$

$$V$$

 n_i
 n_e
 χ

 $\mathbf{P}_{s}(\mathbf{r},t) = m_{s}M^{-} = m_{s}\int \mathbf{c}\mathbf{c}F_{s}d\mathbf{v}$ $Q_s(\mathbf{r},t) = \frac{1}{2} m_s \int \mathbf{c} c^2 F_s d\mathbf{v}$

Macroscopic Equations

$$\int \mathbf{v}^{n} \left[\frac{\partial F_{s}}{\partial t} + \mathbf{v} \cdot \frac{\partial F_{s}}{\partial \mathbf{r}} + K_{s} \cdot \frac{\partial F_{s}}{\partial \mathbf{v}} = \left(\frac{\partial F}{\partial t} \right)_{collision} \right] dv$$

moment in velocity space
$$n = 1 \qquad \frac{\partial n_{s}}{\partial t} + \nabla \cdot (n_{s} \mathbf{u}) = 0$$

$$n = 2 \qquad \frac{\partial}{\partial t} (\rho_{s} \mathbf{u}_{s}) + \nabla \cdot (\rho_{s} \mathbf{u}_{s} \mathbf{u}_{s}) + \nabla \cdot \widetilde{\mathbf{P}}_{s} - \rho_{cs} \mathbf{a}_{s} = \left(\frac{\partial M_{s}}{\partial t} \right)_{collision}$$

$$n = 3 \qquad \frac{\partial}{\partial t} \left(\frac{3}{2} \widetilde{\mathbf{P}}_{s} + \frac{1}{2} \rho_{s} u_{s}^{2} \right) + \nabla \cdot \left\{ \left(\frac{1}{2} \rho u_{s}^{2} + \frac{5}{2} \widetilde{\mathbf{P}}_{s} \right) \mathbf{u}_{s} + Q_{s} \right\} - \rho \mathbf{J} \cdot \mathbf{E}$$

$$= \int \frac{m}{2} c^{2} \left(\frac{\partial F_{s}}{\partial t} \right)_{collision} d\mathbf{v}$$

s=ion or electron

"closure"

Single-fluid variables

For the macro-scale variables

 $L >> \lambda_D \qquad \omega << \omega_p \rightarrow n_e \approx n_i \text{ quasi-neutrality 準中性}$ Total mass density

→ X quasi-neutrality 進中性

n,

 $\rho(\mathbf{r},t) = n_e m_e + n_i m_i = n(m_e + m_i) \sim n m_i = \rho_i$

Center of mass velocity

$$\mathbf{u}(\mathbf{r},t) = \frac{1}{\rho} (n_e m_e \mathbf{u}_e + n_i m_i \mathbf{u}_i) \sim \mathbf{u}_i$$

Electric current density

$$\mathbf{J}(\mathbf{r},t) = e(n_i \mathbf{u}_i - n_e \mathbf{u}_e) \sim -neu_e$$

Magnetohydrodynamics (MHD) eq.

Cont. eq.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

- Eq. Motion $\frac{\partial}{\partial t} (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) + \nabla \cdot \tilde{\mathbf{P}} - \mathbf{J} \times \mathbf{B} = (\frac{\delta M}{\delta t})_{collision}$ • Energy eq. $\frac{\partial}{\partial t} (\frac{1}{\gamma - 1} \tilde{\mathbf{P}}) \frac{1}{2} \rho u^{2} + \rho U_{grav} + \frac{\varepsilon_{0}}{2} E^{2} + \frac{B^{2}}{2\mu_{0}})$ $+ \nabla \cdot \{\rho \mathbf{u} (\frac{\gamma}{\gamma - 1} \frac{P}{\rho} + \frac{1}{2} u^{2} + U_{grav}) + \frac{\mathbf{E} \times \mathbf{B}}{\mu_{0}} + \mathbf{Q}\} = -\mathbf{J} \cdot \mathbf{E} + \int \frac{m}{2} c^{2} (\frac{\delta F_{s}}{\delta t})_{collision} d\mathbf{v}$
- Generalized Ohm's law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J}$$
Faraday's law
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

Hierarchy of Plasma equations

Scales

- Gyro-radius $\rho_s = \frac{v_{th}}{\omega_{s,gyro}}$ $\omega_{s,gyro} = \frac{eB}{m_s}$ • Skin length c ne^2
 - $d_s = \frac{c}{\omega_{ps}}$ $\omega_{ps} = \sqrt{\frac{ne^2}{m_s \varepsilon_0}}$
- Debye length

$$\lambda_D = \sqrt{\frac{\varepsilon_0 kT}{2ne^2}}$$

Scales in the solar coronal plasma

 $r_{i} \sim 1 m, \omega_{gi} \sim 10^{6} r_{e} \sim 2x10^{-2} m, \omega_{ge} \sim 10^{9}$

 $R_{sun} \sim 7.0 \times 10^8 m$

"凍結 (frozen-in)"

19

Magnetic Structure in Solar Active Regions

Solar Atmosphere

Multi-layer Structure

white light 6x10³K

Magnetic Structure

open field

closed field

Plasma β ratio

$$\beta = \frac{plasma \ pressure}{magnetic \ pressure}$$
$$= \frac{p}{\frac{B^2}{2\mu_0}}$$

MHD Equilibrium

Linear Force Free Field

• Rectangle system $\mathbf{B} = B_0(\cos \alpha z, -\sin \alpha z, 0)$ $\nabla \times \mathbf{B} = \alpha B_0(\cos \alpha z, -\sin \alpha z, 0) = \alpha \mathbf{B}$

 $\mathbf{B} = B_0(0, J_1(\alpha r), J_0(\alpha r))$

Cylindrical system

$$\nabla \times B = (0, -\frac{\partial B_z}{\partial r}, \frac{1}{r}\frac{\partial}{\partial r}(rB_\phi)) = \alpha B_0(0, J_1(\alpha r), J_0(\alpha r))$$

Helical Structure in the Corona

Magnetic Helicity (field linkage)

Helicity is a topological invariant.

Linking Fluxes

 $H = \int \mathbf{A} \cdot \mathbf{B} \, dV$ $= \oint_{C_{i}} \mathbf{A} \cdot d\mathbf{l} \int \mathbf{B} \cdot d\mathbf{S}$ $+\oint_{C_2} \mathbf{A} \cdot d\mathbf{l} \int \mathbf{B} \cdot d\mathbf{S}$ $=2\psi\phi$

Helicity is a topological invariant.

 $H = \int \mathbf{A} \cdot \mathbf{B} \, dV$ $= \oint_{C_{i}} \mathbf{A} \cdot d\mathbf{l} \int \mathbf{B} \cdot d\mathbf{S}$ $+\oint_{C_2} \mathbf{A} \cdot d\mathbf{l} \int \mathbf{B} \cdot d\mathbf{S}$ = ()

Calculate the magnetic helicity of these flux tubes.

- Magnetic helicity is a topological invariant.
- Magnetic helicity is conserved in the ideal MHD systems.

Taylor's minimum energy state

 When mag. helicity is approximately conserved in the resistive MHD system, the minimum energy state is given by a linear force-free field.

minimize:
$$E = \int \mathbf{B} \cdot \mathbf{B} dV$$

invariance: $H = \int \mathbf{A} \cdot \mathbf{B} dV$ $\{\nabla \times \mathbf{B} = \alpha \mathbf{B}\}$

Taylor's minimum energy state

Magnetic Free Energy

Force-Free Field in the Corona

Solar Observatories in Space

Magnetograph of NOAA10930

2006.12.13 01:42:37

2006_12_11 17:00 UT

 Total Magnetic Energy Magnetic Free Energy (J)

 1.00E+26

 9.00E+25

 8.00E+25

 7.00E+25

 6.00E+25

 5.00E+25

 4.00E+25

 3.00E+25

1

2

3

4

201 2/9/ 23

33h prior to flare

2006_12_11 17:00 UT

Total Magnetic Energy Magnetic Free Energy (J) 1.00E+26 9.00E+25 8.00E+25 7.00E+25 6.00E+25 flare 5.00E+25 4.00E+25 3.00E+25 2.00E+25 1.00E+25 0.00E+00 201 2/9/ 23 1 2 3

21h prior to flare

2006_12_12 03:50 UT

8h prior to flare

2006_12_12 17:40 UT

5h after flare

フレア発生 5時間<mark>後</mark>

2006_12_13 07:00 UT

Total Magnetic Energy Magnetic Free Energy (J)

NLFF before & after flare

Schrijver et al. 2008

Dynamics in solar coronal magnetic field

Solar Eruptions

Solar Flares

2000/06/04 02:05:45

Properties of Flares

0410042926FBin2Bit10p000 50

5万 km

02:52:58 UT

04:45:58 UT

06:00:34 UT

09:06:42 UT

51

Magnetic Reconnection Model

What triggers the onset of solar eruptions?

Prediction is important.

- For the space weather forecasting
 - When will giant flares and CMEs occur?
 - How is the geo-effectiveness?

- For the promotion of scientific understandings
 - New theories have been established through the efforts for prediction.
 - e.g. Halley's prediction (1682, 1758)

Papers for Flare Prediction

- Poisson statistics (Gallagher et al. 2002, Bloomfield1 et al 2012)
- Bayesian statistics (Wheatland 2005)
- wavelet predictors (Yu et al. 2010a)
- Bayesian networks (Yu et al. 2010b)
- vector machines (Li et al. 2007)
- discriminant analysis (Barnes et al. 2007)
- ordinal logistic regression (Song et al. 2009; Yuan et al. 2010)
- neural networks (Colak & Qahwaji 2009; Yu et al. 2009; Ahmed et al. 2012)
- predictor teams (Huang et al. 2010)
- superposed epoch analysis (Mason & Hoeksema 2010)
- empirical projections (Falconer et al. 2011).

Skill Score of X-flare prediction

1day	2day	3day	year (events)
-0.068	-0.096	-0.141	2011 (8)
0.112	-0.147	-0.171	2006 (4)
0.242	0.147	0.127	2005 (13)
0.052	-0.001	-0.044	2004 (9)
0.200	0.093	0.076	2003 (17)
-0.037	-0.050	-0.033	2002 (12)
-0.061	-0.034	-0.006	2001 (18)

 $SS = \frac{n_{ff} - (n_q - n_{qq})}{N}$

 n_{f}

Space Weather Prediction Center

http://www.swpc.noaa.gov/forecast_verification/

solar flare (GOES X-ray flux)

Storage & Release Process

stock market (Dou Jones in Black Monday)

http://en.wikipedia.org/wiki/Black_Monday_%281987%29

Empirical Prediction

McIntosh classification

Fig. 1. The 3-component McIntosh classification, with examples of each category.

McIntosh 1990

Flare Prob. for each McIntosh class

Gallacher, Moon, Wang 2002 Sol. Phys.

Figure 4. Derived 24-hour active-region flare probabilities for each of the three McIntosh classification parameters using Poisson statistics.

Welsch et al. 2009 ApJ

The total magnetic flux decides the maximum flare size.

Kusano et al. 2012 submitted to ApJ Ensemble Simulation Study

Box: Rectangle including PIL Initial condition: LFFF BC: imposing the electric field to simulate flux emerging

161 simulations

- 3D MHD (zero-beta model)
 - 256x1024x512 grids (finite difference scheme)
- output: 800 GB/run

Simulation Results

Two Structures Triggering Eruption

 There are the two different structures (OP and RS) favorable to the onset of solar flares.

Zirin and Wang 1993

Green, Kliem & Wallace 2011

Eruption & Reconnection (OP)

Tether cutting model Moore & Roumeliotis 1992

 $F = r_c I^2 - B_p I$

Loss of equirlibrium Forbes & Priest 1995 Torus Instability Kliem & Torok 2006

Tether Cutting Scenario

Simulation (OP-type)

The Onset of Storage-and-Release

Summary

- We find that the <u>two different structures (OP and RS)</u> favorable to the onset of solar flares in terms of the ensemble simulations for different magnetic configurations.
- The detail comparison with Hinode and other observations demonstrates that events indeed occurred, which are well consistent with the two scenarios.
- It means that the solar forecast is possible in terms of the sophisticate magnetic observation. However, the lead time of deterministic forecast of flares must be limited by the time-scale of small magnetic structures and flow driver, which is about several hours, presumably.
- The longer term forecast could be performed in a probabilistic manner.