Energetics of Magnetic Reconnection G. Vekstein Jodrell Bank Centre for Astrophysics, The University of Manchester, United Kingdom # Two types of magnetic reconnection - i) Spontaneous reconnection via resistive MHD instability (tearing mode) - ii) Forced reconnection under external deformation of an MHD stable magnetic configuration can act as a trigger for magnetic relaxation Simple example: sheared force-free magnetic field $B''' = \{0, 8, 0 \text{ in } 27, 8, 0 \text{ con } 27\}$, $4 \le 2 \le 4$. $B''' = \{0, 8, 0 \text{ in } 27, 8, 0 \text{ con } 27\}$, $4 \le 2 \le 4$. $B''' = \{1, 1, 2, 3, 4\}$ Cinear force free fieldTearing perturbation $\Rightarrow \psi(x, y) = \psi_0(x) + \psi_1(x) \cos xy$ new force-free equilibrium Stability parameter $$\Delta' = \frac{\Psi_1'(0+\varepsilon) - \Psi_1'(0-\varepsilon)}{\Psi_1(0)} \Rightarrow \Delta' > 0$$ tearing instability Physical explanation Magnetic energy of the system is reduced if $\Delta > 0$ 1 Wm cs - 1 4 (0) Tearing stable configuration: $2 < \frac{\pi}{2a} \Rightarrow$ still electric currents are there 🛶 possesses some excess magnetic energy Can it be released by magnetic reconnection? YES, if reconnection is triggered externally! ### Forced magnetic reconnection Regular solution: 411 Boundary deformation $$x_{\ell}^{(4)} = a + \delta \cos(\kappa y)$$ Slightly (& a) deformed new force-free magnetic equilibrium $$\frac{1}{2} Y(x,y) = \frac{80}{2} ca(xx) + 4/(x) ca(xy)$$ $$Y_1'' + 2^2 Y_1 = 0, \quad 2^2 = 2^2 x^2 > 0$$ $$Y_{i}(x=-a)=0$$, $Y_{i}(x=a)=80$ d'ain(xa) $Y_{i}(x)=\frac{880}{9in(2xa)}$ sin $[82(x+a)]$ $$V_{i}^{(r)}(x) = \frac{880 \sin(4\alpha)}{\sin(2\alpha)} \sin \left[\frac{8e(x+a)}{\sin(2\alpha)} \right]$$ magnetic islands present not allowed in ideal MHD no reconnection $$\Rightarrow \frac{\psi_{i}(0)=0}{\psi_{i}(0)=0}$$ $\psi_{i}(x)=\frac{B_{0}}{2in(2x^{2})}\frac{gin(2x^{2})}{gin(2x^{2})}\frac{gin(2x^{2})}{gin(2x^{2})}$ singularity (discontinuity of B_{ψ}) current sheet at $x=0$. Two force-free magnetic equilibria # What about their magnetic energy? 400 Ideal equilibrium .* $W_{M}^{(i)} = W_{M}^{(i)} + (1)W_{M}^{(i)}$ work of external force required for the boundary deformation $\Delta W_{M}^{(i)} = \frac{B_{0}^{2} \sin^{2}(\lambda a)}{16 \pi a} \sigma^{2} \left[(2 a) \cot(2 a) - (\lambda a) \cot(\lambda a) \right] > 0$ Reconnected equilibrium. (r) War = Wo + AWM 1 WM = Bo 2in (La) or [(20) cot (200) - (La) cot (20)] Important point: reconnected state always has a lower magnetic energy Forced magnetic reconnection reconnective transition from ψ , (i) ## Quasistatic boundary deformation Temporal evolution of magnetic energy $\Delta t \ll \tau \Rightarrow \underline{\text{Ideal MHD evolution}}$ $\underline{\psi}^{(i)}$ equilibrium is formed $t \sim T_r \sim T_A S \Rightarrow \frac{2/3}{2}$ transition to $Y_r^{(r)}$ with lower magnetic energy \Rightarrow Reconnective magnetic relaxation // Important point: released magnetic energy \(\Delta W_M \) can greatly exceed \(\Delta W_M \) External perturbation acts as a trigger for internal magnetic relaxation released energy \(\lambda \text{W}_A \) is tapped from excess magnetic energy stored in the initial magnetic The energy effect of forced magnetic reconnection is strongly amplified for the marginally stable magnetic field 🛶 Link between forced and spontaneous magnetic reconnection #### Possible implications for solar corona • How magnetic energy can be accumulated in the corona without being quickly released by magnetic reconnection? Magnetic energy is stored due to one kind of deformation (for example, by shearing of field lines) Then, at some moment, another type of deformation occurs (for example, emergence of new flux) Forced magnetic reconnection \rightarrow initially stored magnetic energy is quickly released