Energetics of Magnetic Reconnection

G. Vekstein

Jodrell Bank Centre for Astrophysics,

The University of Manchester, United Kingdom

Two types of magnetic reconnection

- i) Spontaneous reconnection via resistive MHD instability (tearing mode)
- ii) Forced reconnection under external deformation of an MHD stable magnetic configuration

can act as a trigger for magnetic relaxation

Simple example: sheared force-free magnetic field $B''' = \{0, 8, 0 \text{ in } 27, 8, 0 \text{ con } 27\}$, $4 \le 2 \le 4$. $B''' = \{0, 8, 0 \text{ in } 27, 8, 0 \text{ con } 27\}$, $4 \le 2 \le 4$. $B''' = \{1, 1, 2, 3, 4\}$ Cinear force free fieldTearing perturbation $\Rightarrow \psi(x, y) = \psi_0(x) + \psi_1(x) \cos xy$

new force-free equilibrium

Stability parameter

$$\Delta' = \frac{\Psi_1'(0+\varepsilon) - \Psi_1'(0-\varepsilon)}{\Psi_1(0)} \Rightarrow \Delta' > 0$$
tearing instability

Physical explanation

Magnetic energy of the system is reduced if $\Delta > 0$

1 Wm cs - 1 4 (0)

Tearing stable configuration: $2 < \frac{\pi}{2a} \Rightarrow$

still electric currents are there 🛶

possesses some excess magnetic energy

Can it be released by magnetic reconnection?

YES, if reconnection is triggered externally!

Forced magnetic reconnection

Regular solution:

411

Boundary deformation

$$x_{\ell}^{(4)} = a + \delta \cos(\kappa y)$$

Slightly (& a) deformed

new force-free magnetic

equilibrium

$$\frac{1}{2} Y(x,y) = \frac{80}{2} ca(xx) + 4/(x) ca(xy)$$

$$Y_1'' + 2^2 Y_1 = 0, \quad 2^2 = 2^2 x^2 > 0$$

$$Y_{i}(x=-a)=0$$
, $Y_{i}(x=a)=80$ d'ain(xa)
 $Y_{i}(x)=\frac{880}{9in(2xa)}$ sin $[82(x+a)]$

$$V_{i}^{(r)}(x) = \frac{880 \sin(4\alpha)}{\sin(2\alpha)} \sin \left[\frac{8e(x+a)}{\sin(2\alpha)} \right]$$

magnetic islands present

not allowed in ideal MHD

no reconnection
$$\Rightarrow \frac{\psi_{i}(0)=0}{\psi_{i}(0)=0}$$
 $\psi_{i}(x)=\frac{B_{0}}{2in(2x^{2})}\frac{gin(2x^{2})}{gin(2x^{2})}\frac{gin(2x^{2})}{gin(2x^{2})}$

singularity

(discontinuity of B_{ψ})

current sheet at $x=0$.

Two force-free magnetic equilibria

What about their magnetic energy? 400 Ideal equilibrium .* $W_{M}^{(i)} = W_{M}^{(i)} + (1)W_{M}^{(i)}$ work of external force required for the boundary deformation $\Delta W_{M}^{(i)} = \frac{B_{0}^{2} \sin^{2}(\lambda a)}{16 \pi a} \sigma^{2} \left[(2 a) \cot(2 a) - (\lambda a) \cot(\lambda a) \right] > 0$ Reconnected equilibrium. (r) War = Wo + AWM 1 WM = Bo 2in (La) or [(20) cot (200) - (La) cot (20)] Important point: reconnected state always has a

lower magnetic energy

Forced magnetic reconnection

reconnective transition from ψ , (i)

Quasistatic boundary deformation

Temporal evolution of magnetic energy

 $\Delta t \ll \tau \Rightarrow \underline{\text{Ideal MHD evolution}}$ $\underline{\psi}^{(i)}$ equilibrium is formed

 $t \sim T_r \sim T_A S \Rightarrow \frac{2/3}{2}$ transition to $Y_r^{(r)}$ with lower magnetic energy \Rightarrow

Reconnective magnetic relaxation

// Important point: released magnetic energy \(\Delta W_M \)

can greatly exceed \(\Delta W_M \)

External perturbation acts as a trigger for internal magnetic relaxation

released energy \(\lambda \text{W}_A \) is tapped from excess magnetic energy stored in the initial magnetic

The energy effect of forced magnetic reconnection

is strongly amplified for the marginally stable

magnetic field 🛶

Link between forced and spontaneous magnetic reconnection

Possible implications for solar corona

• How magnetic energy can be accumulated in the corona without being quickly released by magnetic reconnection?

Magnetic energy is stored due to one kind of deformation (for example, by shearing of field lines)

Then, at some moment, another type of deformation occurs (for example, emergence of new flux)

Forced magnetic reconnection \rightarrow initially stored magnetic energy is quickly released