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Data-Driven Models

Physics-based Models:

® Data-inspired Models: Simplitied simulations to mimic observed
scenarios

® Data-constrained Models: Time-independent models satistying
observations at an instant in time. Includes models that may start with a
data-constrained initial condition but driven by idealized boundary
conditions.

® Data-Driven Models: Time-dependent models evolved in response to
evolving boundary conditions

Empirical Data-Driven Models:

® Physics-rules not prescribed. Try to discover relations in the data.
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Examples of Data-inspired Models

Left: Lugaz et al. (2011, ApJ)

21-Aug-2005 09:21 - 21-Aug-2005 09:08

-

gL ;i . ‘ * |dealized flux rope inserted into
i N Lt W a4 background field extrapolated from a
synoptic magnetogram.

e MHD evolution of the non-force-free
initial condition leads to a CME

Right: Fan (2011, ApJ)
e Smoothed MDI magnetogram of AR 10930 so that B=3 kG -> 200 G

e Atwisted flux rope was emerged into the pre-existing sunspot. The
interaction between the two magnetic systems leads to an eruption




Examples of Data-inspired Models

Torok et al. (2011, ApJL): MHD model of sympathetic eruptions inspired by Aug 1st 2010 events.



Data-Constrained Model: Aug 21st Eclipse Predictions

Prediction made August 14, 2017 rsackettO0@yahoo.com

Based on SDO/HMI and SDO/AIA data Cape Girardeau, MO

Using software developed by Predictive August 21, 2017 1:21 pm CDT

Science, Inc. High dynamic range composite processed to
http://www.predsci.com/corona/aug2017ecli bring out coronal streamers and earthshine
pse/home.php on moon. Sky & Telescope online gallery

Courtesy: Z. Mikic
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Data-Constrained Models

Alfvén Wave Solar Model (AWSoM
van der Holst+ (2014, ApJ

oFully-compressible MHD equations
+ Alfvén wave propagation ana o
dissipation. BB R R —

eUsed AIA (and STEREO) EUV images
to validate the Alfvén wave heating
model (as opposed to an analytical
spatially-dependent heating model).

eSee Alvarado-Gémez et al. (2016,
2018) tor application to stellar winds
of exoplanet host stars.
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Data-inspired Model




SDO's main goal is to understand, driving toward a predictive capability,
those solar variations that influence lite on Earth.
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SDO images the sun’s surface, atmosphere and interior.
The mission generates about 3 terabytes worth of science data.




SDO In a Nutshell

e 3 instruments monitoring the Sun all the time since May 2010.

e Atmospheric Imaging Assembly (AlA): visible, UV, and EUV full disk images of the
photosphere, chromosphere, transition region and corona at 4096x4096 pixels.

* Helioseismic & Magnetic Imager (HMI): visible light full disk dopplergrams and

magnetograms at 4096x4096 pixels.

e FUV Variability Experiment (EVE): disk-integrated EUV irradiance spectra at 1 A resolution.
e About 12 PBs of data to date.

e SDO science data has been part of over 3000 refereed publications (18 in Science, 17 in
Nature, 46 PhD dissertations).

e Easy data access: First authors are spread out over 33 countries with co-authors from at
least another 18 (source: NASA SDO project scientist Dean Pesnell).
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1. No proprietary data withholding
period.

2. Anyone with internet access can
download full resolution, quick-look
images within minutes of their
capture. Fully calibrated science
data available within days.

3. Mirror data archives located
around the world, including at
Harvard-Smithsonian Center for
Astrophysics, MPI for Solar System
Research (Gottingen), University of
Lancashire (UK) and Korea.

13
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COLLABORATIVE
METADATA
ENVIRONMENT

‘ ' 1. Researchers / computer algorithms find
features and events (e.g. sunspots, flares)

l l and submit them to the Heliophysics

Events Knowledgebase (HEK).

2. HEK is like a table of contents for solar
data.

' ‘ 3. HEK tells the user which data sets (from

1
4" different observatories) are available,

which events are nearby. This accelerates

their workflow and widens their discovery
space.

4
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Joint Science Operations Center (JSOC) http://jsoc.stanford.edu

Search I Match ALL words <

HMI Data Products

AIA Data Products

MDI Data Products

SHA Data Products

IRIS Data Products

SID Data Products

#% Useful Links **

 SDO Data Use Policy

« HMI Coverage Tables

« HMI Support Information

 AIA Coverage Tables & Release Notes

@ JSOC Processing Status

e JSOC System Status

 HMI Event Tables

Data Access || Visual Catalog | Docs | News & Events

Welcome to the Joint Science Operations Center (JSOC) Science

Data Processing (SDP) home. Data products from the Solar Dynamics Observatory, as well as certain other missions and instruments, are available from the JSOC
database. The following instruments and projects have data archived here:

Helioseismic and Magnetic Imager (HMI): is one of three instruments aboard the Solar Dynamics Observatory(SDO) designed to study oscillations
and the magnetic field at the solar surface. HMI observes the full solar disk at 6173 A with a resolution of 1 arc second and is a successor to the Michelson Doppler
Imager(MDI) on the Solar and Heliospheric Observatory(SOHO).

Atmospheric Imaging Assembly (AIA): is another instrument board the Solar Dynamics Observatory(SDO) designed to study the solar corona,
taking simultaneous full disc images in multiple wavelengths of the corona and transitional region (up to half a solar radius above the solar limb), with 1.5 arc sec
resolution and 12 second temporal cadence or better. The primary goal of the AIA Science Investigation is to significantly improve our understanding of the physics
behind the activity displayed by the Sun's atmosphere, which drives space weather in the heliosphere and in planetary environments.

Michelson Doppler Imager (MDI): is the predecessor to the current HMI and was launched aboard the Solar and Heliospheric Observatory (SOHO).
It 1s a project of the Stanford-Lockheed Institute for Space Research and part of an international collaboration to study the interior structure and dynamics of the Sun.
All the data observed by MDI 1s now archived in the JSOC.

Stanford Helioseismology Archive (SHA): is a compilation of helioseismology data from various missions including Global Oscillations Network
Group (GONG), Mount Wilson, Magneto-Optic Two-Height Instrument (MOTH), Taiwan Oscillations Network (TON) and others to facilitate research.

Interface Region Imaging Spectrograph (IRIS): is a multi-channel imaging spectrograph with a 20 cm UV telescope which will obtain UV spectra
and images with high resolution in space (0.33-0.4 arc sec) and time (1s) focused on the chromosphere and transition region of the Sun. The primary goal of the IRIS
explorer 1s to understand how the solar atmosphere 1s energized.

Sudden Ionosphere Disturbance(SID) Monitors program is an educational project to build and distribute inexpensive ionospheric monitors to
students around the world.These monitors detect solar flares and other 1onospheric disturbances. JSOC is the central data repository where students can exchange and
compare data.

Contacts | JSOC Home | Exportdata | Lookdata | SDO-NASA | Stanford Solar Home | Stanford Solar-Center

SDO Privacy Notice 16
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About ~ Documentation ~ Blog Support Us Get Help SunPy Project

drms documentation

Release: (056

Date: February 19, 2019

Github:  https://github.com/sunpy/drms

PyPI: https://pypi.python.org/pypi/drms

Python module for accessing HMI, AIA and MDI data.

e Introduction
o Requirements
o |nstallation
o Acknowledgements
e Tutorial
o Basic usage
o Data export requests
o Example scripts
e API| Reference
o Classes
o Constants and utility functions
o Exceptions 17



LMSAL >> Sungate >> Heliophysics Events Knowledgebase http://www.Imsal.com/hek/api.html

A Heliophysics Events Knowledgebase to facilitate scientific discovery

List of Supported Feature/Event types and associated attributes

The full list of Event/Feature types and associated attributes can be found here.

Web API

Web developers who wish to create third-party web applications interacting with the Heliophysics Events Registry should consult the HER
Web API wiki, which provides examples on how to query HER, how to submit events to HER as well as other functions.

Sunpy API

Sunpy has a HEK module for using HEK's web API.

SolarSoft IDL

We are developing a number of software packages to help researchers use and contribute to the HEK project:

e Ontology package: SolarSoft API for reporting events and features to the Heliophysics Events Registry (HER), as well as for querying
HER.
e Panorama: an OpenGL based browser for viewing solar data

P — [ — s emp e - - - . - e - PR ———
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http://www.lmsal.com/hek/api.html

* Hayes, Gallagher , McCauley, Dennis,

Ireland & Inglis,

with Solar Flare

“Pulsations in the

Earth’s Lower lonosphere Synchronized

Fmission”, JGR, 2017/.

e “To examine the lower ionosphere

response to X-ray QPP VLF radio
signals at 24 kHz emitted by the

communication
U.S. (station ID:

s transmitter in Maine,
NAA: 44.6.:N, 67.2-W)

were monitored at the Rosse Solar—

Terrestrial Observatory in Birr, Ireland

(63.1:N, 7.9-W)

using Stanford

University Sudden lonospheric

Disturbance (Sl
al., 2008).”

D) monitor (Scherrer et
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Data-Driven Space Weather Models

Physics-based Models:

® Data-inspired Models: Simplitied simulations to mimic observed
scenarios

® Data-constrained Models: Time-independent models satistying
observations at an instant in time. Includes models that may start with a
data-constrained initial condition but driven by idealized boundary
conditions.

® Data-Driven Models: Time-dependent models evolved in response to
evolving boundary conditions

Empirical Data-Driven Models:

® Physics-rules not prescribed. Try to discover relations in the data.

21



HMI vector magnetogram sequence of NOAA AR 11158
Credit: Keiji Hayashi (HMI)



Visualization of Field Lines y side view
Top view

e e i et
X side view

ZAD AN Z — 1] 248083
e el e

Orange ~ [ s<j2>dl, where <j?> is fieldline-averaged j2. Positive polarity B, Negative polarity B,
23



Data-Driven Space Weather Models

Physics-based Models:

® Data-inspired Models: Simplitied simulations to mimic observed
scenarios

® Data-constrained Models: Time-independent models satistying
observations at an instant in time. Includes models that may start with a
data-constrained initial condition but driven by idealized boundary
conditions.

® Data-Driven Models: Time-dependent models evolved in response to
evolving boundary conditions

Empirical Data-Driven Models:

® Physics-rules not prescribed. Try to discover relations in the data.

24
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Researchers paid to work
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Model Approaches

DeepEM
(temperature map

inversion)

Physics-based
(Forward Model) SDO/EVE

(MEGS-A)
emission
line

Full Machine Learning spectra

MLP, CNN, etc.

Best Model: Linear Model on [AIA Means, AlA stds]
+ AlexNet on Residuals + Average Pool
<Rel Err> < 5% for all emission lines, < 2% for most lines

28
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Abstract

In this paper, we present a curated data set from the NASA Solar Dynamics Observatory (SDQO) mission in a

format suitable for

various instrumental

observations spatial

machine-learning research. Beginning from level 1 scientific products we have processed
corrections, down-sampled to manageable spatial and temporal resolutions, and synchronized
ly and temporally. We illustrate the use of this data set with two example applications:

forecasting future extreme ultraviolet (EUV) Variability Experiment (EVE) irradiance from present EVE irradiance
and translating Helioseismic and Magnetic Imager observations into Atmospheric Imaging Assembly observations.
For each application, we provide metrics and baselines for future model comparison. We anticipate this curated
data set will facilitate machine-learning research in heliophysics and the physical sciences generally, increasing the

scientific return of

the SDO mission. This work is a direct result of the 2018 NASA Frontier Development

Laboratory Program. Please see the Appendix for access to the data set, totaling 6.5TBs.

Key words: astronomical databases: miscellaneous — catalogs — editorials, notices — miscellaneous — surveys




ML reveals systematic accumulation of electric current in lead-up to solar flares

Table 4. Average values of SHARP features over flaring and nonflaring AR magnetic-field observations categorized by the SVM

Flaring ARs,
>72 h from flare

Nonflaring ARs

Symbol Brief description TP FN FP TN (TP — TN)/on
USFLUX, 10%% Mx Total unsigned flux 3.30 + 0.29 1.07 + 0.11 2.48 + 0.19 0.56 + 0.03 94.71
TOTUSJH, 10 G*/m Total unsigned current helicity 23.87 + 2.09 7.89 + 0.81 19.45 + 1.42 4.29 + 0.21 91.27
TOTBSQ, 10'° G2 Total Lorentz force 4.43 + 0.41 1.53 £+ 0.17 3.57 £+ 0.32 0.83 + 0.04 89.10
TOTUSJZ, 10" A Total unsigned vertical current 5.43 4+ 0.45 1.86 + 0.21 4.48 + 0.35 1.00 + 0.05 85.68
TOTFZ, 10%* dyne Total vertical Lorentz force —3.30 + 0.51 —0.61 4+ 0.19 —1554+0.20 —0.34+0.04 78.54
SAVNCPP, 103 A Sum of net current per polarity 1.14 £+ 0.11 0.39 + 0.05 0.93 + 0.10 0.24 + 0.01 74.70
ABSNJZH, G%/m Absolute net current helicity 254.59 4+ 31.95 68.37 &+ 12.66 208.28 + 28.53 40.68 + 2.92 73.23
TOTPOT, 10% erg/cm Total magnetic free energy 5.20 + 0.61 1.44 + 0.30 4.80 + 0.61 0.72 + 0.06 71.71
AREA, Mm? AR area 262.17 +-19.99 110.95 + 11.88 222.82 + 18.35 62.75 + 2.81 71.00
R_VALUE, Mx Flux near polarity inversion line 4.06 + 0.09 2.81 + 0.25 4.04 + 0.08 2.09 + 0.09 20.95
SHRGT45, % Area with shear >45° 29.76 + 1.85 24.87 + 3.81 37.30 + 2.04 20.24 + 1.17 8.10
MEANPOT, 10 erg/cm® Mean magnetic free energy 68.34 + 4.61 54.82 + 10.08 81.42 + 6.64 45.51 + 3.04 7.51
True positives (TP) and false negatives (FN) are observations from flaring ARs which are classified as flaring and nonflaring, respectively. True negatives

(TN) and false positives (FP) are observations from nonflaring ARs that are classified as nonflaring and flaring, respectively.

Dhuri, Hanasoge & Cheung (PNAS 20th May 2019)

Follows ML approach of

PNAS Latest Articles | 3 of 6

SDO/HMI Vector Magnetograms Important for Flare Prediction

Bobra & Couvidat (2015)
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summary

Data-inspired, Data-constrained, Data-Driven Physics based models.

NASA's Solar Dynamics Observatory a poster child for a successful science mission that

also contributes to operational space weather. How?

® Open data policy (legacy ot SOHO; NASA Heliophysics leadership): Near-real time

(nearly science quality) data available within minutes. Final science data available
within days.

® Meta-databases (HEK) + APIs (not just some passive FTP site)

® |[nstruments and investigations operated by teams who care about the science.

BTW Don't take SDO for granted. No space-based Sun-Earth line solar magnetogram
funded.

Open data + open source software + machine learning frameworks + (relatively)
inexpensive compute will let us use our sensor networks more effectively, and make
improvements to space weather predictions.


https://tinyurl.com/ictp-cheung

Backup slides



Modeling Geomagnetic Variations using a Machine Learning Framework

Mark C. M. Cheung!?? (cheung@Imsal.com), Casey Handmer®, Burcu Kosar

4,3,%

3 8,3

, George Gerules®, Bala Poduval®®* Graham Mackintosh®, Andrés Mufioz-Jaramillo®?, Monica Bobra®®, Troy Hernandez'*, Ryan McGranaghan

lLockheed_ Martin Solar & Astrophysics Lab, Palo Alto, CA, USA, Stanford University, CA, USA, NASA Frontier Development Lab, Mountain View, CA, USA, *NASA Goddard Space Flight Center, MD, USA,
Space Science Institute, Boulder, CO, USA, “Southwest Research Institute, Boulder, CO, USA, /IBM, Chicago, IL, USA, ®Jet Propulsion Laboratory, Pasadena, CA, USA, *presenting authors

NASA FRONTIER DEVELOPMENT LAB 2017

= an Artificial Intelligence (Al) R &D accelerator

= to tackle important questions in the space sciences

= an intense 8—week focused study

= topics: Planetary Defense, Space Weather and Space Resources

RESOURCESLU * ockigeD mARTIN -

MACHINE LEARNING/AI

Project 1 Project 2

Recurrent Neural Nets (RNNs) Ensemble
(Geomag + Solar Wind) (Geomag + Solar Wind + Kp) m Keras
Gradient Boosting 5 I‘\
AdaBoosting
Long Short Term Memory Random Forest
(LSTM) Gaussian Process

Bagging

Extra Trees

pUthon

Keras: An open source neural network (NN) library written in Python.
Scikit-Learn: A free machine learning library for Python, featuring various clas-
sification, regression and clustering algorithms including support vector ma-
chines, random forests, gradient boosting, etc.. It is designed to operate with
the Python numerical and scientific libraries NumPy and SciPy.

TensorFlow: Another open source software library for machine learning, de-
signed for building and training deep neural networks to detect and decipher
patterns and correlations.

Kp INDEX

The K-indices quantify the disturbances in the horizontal component of geo-
magnetic field, represented by an integer in the range 0-9. It is derived from the
maximum fluctuations of horizontal components during three—hour intervals.
The planetary index Kp is the mean of standardized K-indices from 13 stations
between 44° and 60° N/S geomagnetic latitude. NOAA/Space Weather Pre-
diction Center (SWPC) makes use of the Kp index when issuing geomagnetic
storm warnings.

G-Scale Kp Activity Level Occurrence Frequency

GO0 4 & lower Below Storm

G1 5 Minor Storm 1700 per cycle (900 days per cycle)

G2 6 Moderate Storm | 600 per cycle (360 days per cycle)

G3 7 Strong Storm 200 per cycle (130 days per cycle)

G4 8 Severe Storm 100 per cycle (60 days per cycle)

G5 9 Extreme Storm 4 per cycle (4 days per cycle)
Bstimated Planetary K index (3 hour d6ta)  pegin: 2003 0ot 28 0000 UTc  Estimated Planetary K index (3 hour duta)  pegin: 2017 Aug 08 0050 UTS

6 4 6 ™
g
27 g
a4 4t
& K
3 3
1 1
0 i o i

1
Oct 29 Oct 30 oct 31 Nov 1 Aug 8 Aug 9 Aug 10 Aug 11
Universal 1 Time Universal Time
Updated 2003 Nov 1 02:45:03 UTC

Kp index

NOA4/SEC Boulder, CO USA Updated 2017 Aug 11 00:30:02 UTC NOAA/SWPC Boulder, CO USA

Figure : 1 Kp index during Halloween event (left) and during a very quiet period (right).

THE PROBLEM DEFINITION

(Q1) Can we apply machine learning
(ML) to forecast geomagnetic variabil-

ity using solar wind and ground-based
measurements?

(Q2) Without imposing a priori, first-
principles based, physical models of
the solar wind-driven geomagnetic sys-
tem, what insights can ML extract
from the data?

METRIC OF ACCURACY

We obtained the mean square errors between observed and predicted Kp indices
using various models. Also, we computed the p-statistics to determine the
statistical significance of how well the models do compared with each other.
With > 95% confidence, the models have different performance metrics.

ML method 1h ahead 3h ahead 6h ahead

Persist 0.007 0.020 0.025

Mean 0.046 0.046 0.046

Median 0.048 0.048 0.048

Gradient Boosting 0.007 0.015 0.021 zogr;?ence vl
Adaptive Boost 0.012 0.018 0.032

Extra Trees 0.009 0.021 0.027

Random Forest 0.015 0.015 0.026

= Space Weather: Solar-driven fluctuations in the near-Earth environment leading to disruptions and damages to our critical infrastructure and technological

systems in space and on Earth.

« Space Weather events: Solar flares, coronal mass ejections (CMEs), solar energetic particle (SEP) events, solar radio bursts, geomagnetic disturbances

« Space Weather impacts: Disruptions in wireless communications, Global Positioning System (GPS), satellite operations and communication, aviation, and the

electrical power grid.

« Space Weather forecast: Using physics-based and empirical models to mitigate the impacts of extreme space weather events (National Space Weather Action
Plan - SWAP). Improved predictions offer better protection for space weather stakeholders.

Scale | Description | Effect

Extreme Power systems:
systems may expe
Sp:

ur, some grid Kp =9

e
acecraft operations: uplink/downlink

Severe

G3 | strong Kp=7

G2 Moderate Kp=6
transformer damag
Spacecraft oper:
n drag affect

ay be required by ground control; possible changes

Other syste t higher latitudes, and aurora has been seen as low as New
York and Idah

G1 | Minor Power systems: Kp=s
Spacecraft oper
Other systems:
atitudes (northern M

er levels; aurora is commonly visible at high

Physical
measure

Average Frequency
1 a

(1 cycle

4 per cycle
(4 days per cycle)

200 per cycle

s per cycle) Disrupted TV and computer

(130 days

600 per ¢

1700 per

ycle
(360 days per cycle)

11 years) Date Event Level

1 Sept 1859 .Carrington Event Extreme
widespread disruption of
telegraph

13 March 1989 | Hydro-Quebec Severe

9 hour black out

20/21 Jan 1994.Anik-E1 and Anik-E2 failed vModerate

transmission
14 July 2000 Bastille Day Event Extreme

31 October Halloween Events Extreme
2003 Affected airlines, caused power
outages, damaged transformers,

cycle

(900 days per cycle) led astronauts on ISS to take

shelter

DATA USED

Period of Study: 2016 (descending phase of Solar cycles 24)

o Observed solar wind properties: Multispacecaft compilation of solar wind
observations at Lagrangian point 1: http://omniweb.gsfc.nasa.gov/.
solar wind speed, proton density, heliospheric magnetic field (HMF)
intensity, HMF B, etc.

@ Geomagpnetic field measurements - 14 US stations operated by US
Geological Survey.

© Kp (planetary K) index.
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Figure : 3a Geomagnétic field data.
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Figure : 3b Solar wind data.

PREDICTED Kp
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Figure : 4 Actual observed Kp (calculated from ground observations) (black dots) and
corresponding values from 3-hr ahead forecast using a persistence (dark green dots), global
mean (light green dots) and gradient boosting (yellow dots) models.

We used nearly 7 months of data to train the model and then tested the model
by predicting the Kp indices for 3 months (Figure 4 shows a subset of the test
data). The training and testing data were partitioned such that the models
have not seen data with any overlap between the two sets.

The Gradient Boosting Regressor model provided the best results, consistently
beating a persistence model (i.e. the current Kp index predicted not to change
in the future) and various machine learning models in scikit-learn, with a con-
fidence level > 95%.

Also, the Gradient Boosting model ranks the input features by their relative
importance for creating a good prediction (Figure 5).

RELATIVE IMPORTANCE OF INPUT PARAMETERS

Kp
Vx, km/s, GSE
SJG_X

Field mag avg, nT
Proton density, n/cc
GUA_X

SHU_Z

HON_X

HON_Y

Bz, nT (GSM)
GUA_Y

FRD_Y

FRN_Z

Flow speed, km/s
5IG_Z

NEW_Z

SHU_Y

SIT_X

TimeOfDay
SHU_X

NEW_X

GUA_Z

FRD_X

By, nT (GSM)
SIT_Y

HON_Z

BSL Z

FRN_Y

BSL_Y

STz

By, nT (GSE,GSM)
FRD_Z

SIG_Y

BSL_X

BRW_Z

FRN_X

BX, nT (GSE, GSM)
Tuc_z

BOU_Z

BRW_Y

Vy, km/s, GSE
TUC_X

BOU_X

cMo_z

BOU_Y

Electric Field, mV/m
DED_Y

Bz, nT (GSE)

Follow QR code
cMo_Y
i for poster pdf
Alfven mach number
TUC_Y
Vz, km/s, GSE
Plasma beta
BRW)O( 00 0.05 0.10 0.15 0.20

Feature Importance

Figure : 5 Relative importance of input parameters in the prediction of Kp using the Gradient
Boosting Regressor model.
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