Coronal Mass Ejection Rates over 4 Solar Cycles

David Webb

ISR, Boston College

ISWI Trieste, IT 22 May 2019

OUTLINE

Coronal Mass Ejections (CMEs) are an important aspect of solar activity and space weather.

(A) Observations of CMEs now extend over last 4 solar cycles:

- LASCO observed entire SC 23 and most of current SC 24.
- New: g-b Mauna Loa Mk CME counts to fill "coronagraph gap" in rates: 1989-1996.
- Now: CME rates from both LASCO & STEREO coronagraphs since 2007 & in heliosphere since 2003 from SMEI and the SECCHI HIs.
- Have rates from both visual observer counts ("manual") and "automatic" programs → SEEDS, CACTus, CORIMP, ARTEMIS.
- However, there is a large spread in these CME rates.
- In the past, CME rates tracked solar activity SunSpot Number (SSN).
- But SC 23 had an unusually long decline and flat minimum & CME and SSN rates diverged in SC 24.
- (B) Determination of a basal rate of CMEs at SC minima.

(A) Annual CME & SSN Rates Well Correlated (r~0.9) in SCs 21-23

CME CME-SSN Correlations & Selection Effects

- In the past occurrence rate of CMEs observed in white light tracked SC in both phase & amplitude.
 - CME and SSN rates diverged late in SC 23 & in SC 24 → similar CME rates but lower SSN rates.
 - First noted by Luhmann et al. (2011) & Petrie (ApJ, 2013) → suggested divergence related to weak solar polar mag fields during the extended SC 23/24 min. & SC 24.
- Selection Effects in CME Catalogs
 - Typically, CMEs identified & classified in coronagraph data by visual inspection → "manual" CME catalogs. Inherently subjective & depend on instrument char.
 - Recently augmented by "automatic" catalogs of CMEs. Auto methods more objective, but results inconsistent with each other & with manual catalogs.
 - Wang & Colaninno (ApJL, 2014) → eliminating so-called "very poor events" from (CDAW) LASCO catalog results in lower CME rates, esp. since 2005 & better CC.
 - Others suggest eliminating "narrow" CMEs has same effect.
 - Wang & Colaninno also → an increase in the LASCO data cadence since 2010 caused an increase in the auto catalogs CME rate!
- In this study we exclude all CMEs with widths < 20° when using CME catalogs.
 - Also our CME rate data corrected for periods of missing data & smoothed, & we use total magnetic flux, not SSN to track solar activity.

• Smoothed plots of LASCO CME and total solar magnetic flux from Wilcox Solar Obs. for SCs 23 & 24. - Similar CME rates but lower MF rate.

(The SSN & total fluxes are similar so SSN is a good proxy for total flux.)

- Large spread of manual (CDAW) and auto (SEEDS and CACTus) CME rates during maxima.
- There is significant magnetic flux at cycle *minima*.

Heliospheric CME Rates

Monthly count rates of heliospheric CMEs from STEREO HI-A (2007-present), HI-B (2007-2014), and SMEI (2003-2011). The heliospheric CME rate is lower than near the Sun, but the SC trend is similar and tracks solar activity.

(HI-A CME counts courtesy EU FP7 HELCATS project)

- Comparison plot of LASCO CME vs SSN rates compared to previous rates from Webb & Howard (JGR, 1994) & Robbrecht et al. (ApJ, 2009).
- Indeed the slope is steeper → more CMEs per unit SSN this cycle. Also evidence of weakening of solar activity tracers in general.

• 2007 \rightarrow present. Manual & automatic CME rates from LASCO & STEREO coronagraphs provide 8 *independent measurements*. LASCO \rightarrow solid lines; STEREO \rightarrow dashed lines.

- STEREOs in solar conjunction after late 2014. ST-A recovered, ST-B lost!
- Note SC 24 has double peaks; both CME and MF higher in 2nd peak in 2014.
- CME rates track MF during decline.

CME-MF Rates: **SC** 22-24

- To LASCO plot we add preliminary CME rates for 1989-1996 during SC 22 from groundbased MLSO MK-3 K-coronameter (St. Cyr et al., SP 2015).
- Allows us to bridge gap in CME *coronagraph* observations. MK instruments help to "calibrate" CME rates from different telescopes over different SCs.

CME Rates: Add SC 21 from Webb & Howard (1994)

- Good match between Webb & Howard SC 21 and current SC 22-24 CME rates:
 - SMM & Mk-3 rates similar in 1989
 - But different telescope rates need to be normalized
- Note double peaks in CME and MF rates. CME peaks lag MF peaks by months to ~ 1 year. Lag
 related to two main sources of CMEs: Emerging flux & ARs (SSN) & Polar Crown filaments →
 move poleward and erupt around time of polarity reversal

	Year	CME Rate (CMEs/day)	SSN Rate ⁶	Total Mag. Flux (10 ²² Mx)
SC No.				
Minimum (Webb et al., 2017	7)		
20/21	1976	0.3	18	17
21/22	1986	0.3	16	20
22/23	1996	0.7; 0.8 ¹	11	14
23/24	2009	0.5; 0.7 ²	2	8
Maximum (work in progres	s)		
21	1979-80	2.5	231	66
22	1989-90	(3.5) ³	206	66
23	2001-02	4.4 ⁴	182	58
24	2014	3.8 ⁵	117	36 [44]

¹ = LASCO C2 - St. Cyr et al. (2000); S. Yashiro (2019, p.c.)

² = Avg COR-2A & 2B; LASCO C2 (S. Yashiro, 2019, p.c.)

- ³ = SMM max value under review
- 4 = Avg of 3 LASCO meas.
- ⁵ = Avg of 8 meas. *excluding* COR2 SEEDS
- ⁶ = Avg monthly SSN (V2; SILSO, ROB, Belgium)

- CME rates must be corrected (normalized) for each instrument's "visibility function" to make meaningful comparisons of CME rates bet. SCs.
- VF includes the detection threshold for events in the skyplane and detectability of CMEs away from this plane.
 - Webb & Howard, JGR (1994); St. Cyr et al., JGR (2000)
- The sensitivity or dynamic range of LASCO & STEREO CCD detectors orders of magnitude improved over older coronagraph detectors.
 - Several studies suggest that LASCO detects ~95% of all CMEs
 - "True" coronagraph rate → Comparing LASCO & STEREO CME rates when aligned in 2007 and during quadrature in 2010-2011
 - Careful consideration of the VF correction is needed for the g-b MK data because its viewing background includes both sky and coronal brightness
- We are evaluating these issues of sensitivity and VF to determine a comprehensive CME rate over the last 4 SCs.

(B) Is There a Basal Rate of CMEs at Solar Cycle Minima?

- With recent prolonged minimum question is whether there is a base level of solar magnetism that yields a "floor" in activity levels.
 - Schrijver et al. (GRL 2011) argued the recent minimum approached extreme levels of the Maunder Minimum.
 - Suggest a base level of solar mag. activity in form of small bipolar regions that maintain a floor in magnetic activity.
 - Other researchers → this solar base level yields a floor in the solar wind IMF caused by either slow solar wind (Cliver et al.) or base level of CME activity (Owens et al.).
- We asked question: Is there a basal rate or floor in the CME rate?
 - To address this we determined & compared annual averages of CME rates during last 4 SC minima with several tracers of global mag. field.
 - We conclude (Webb, Howard, St. Cyr & Vourlidas, ApJ 2017) → typical basal rate of 1 CME every ~1.5 to 3 days during the last 4 minima.
 - Modeling and simulations suggest that, under assumption that CME rate ∞ the total magnetic flux, the basal CME rate is true activity floor extending back to MM.

CME Rates – SC 23-24 Minimum

One-year average time of SSN minimum was 2008.5 - 2009.5.

• CME and SSN/MF rates track well. Avg CME rate is 0.5/day (ST. CORs) – 0.7/day (LASCO).

Data Rates at SC Minima

		CME Rate (CMEs/day)	
SC No.	Year		
20/21	1976	0.3	
21/22	1986	0.3	
22/23	1996	0.7; 0.8	
23/24	2009	0.5; 0.7	

- From our previous table → basal rate of 1 CME every ~1.5 to 3 days during the last 4 minima.
 - The VF-corrected CME rates in 1976 and 1986 are similar to each other & the rates in 1996 and 2009 are also similar to each other.
 - But the recent rates are ~ twice those in 1976 and 1986. Those rates (Webb and Howard, 1994) required large correction factors.
 - The more recent higher rates also likely reflect the superior performances of LASCO and STEREO coronagraphs which require only small corrections.

CME Sources at SC Minima

- Large-scale coronal activity at solar minima \rightarrow gradual reconfigurations of streamer structures that characterize the flattened HCS.
 - Many involve CMEs that disrupt or completely blowout pre-existing streamer.
- Source regions of streamers and associated CMEs at minima lie along global polarity inversion line (PIL) that is the base of the HCS.
 - Usually has a minimal tilt of ~20° about the solar equator.
 - Some streamer-disruption CMEs assoc. with prominence eruptions, ~2 per month.
 - Not unexpected as prominences typically assoc. with CMEs throughout cycle & lie along PILs.
- Not surprisingly, given the lack of sunspots around activity minima, very few CMEs assoc. with sunspots-active regions
 - Supports our current understanding that CMEs arise from large-scale, closed-field magnetic regions, NOT small-scale structures.

LASCO & WSO synoptic maps – SC 23-24 min. in 2008-09

17

Models of Coronal Magnetic Field Evolution

• Early models used potential-field extrapolations:

- First approx. of Sun's open flux & coupled to heliospheric models like WSA.

- But allow no free energy or currents, so underestimate total flux.
- Global MHD models have advanced & even account for plasma thermodynamics.

- But they depend on potential-field extrapolations & can't simulate long-term evolution.

 Schrijver et al. (GRL 2011) used a flux-transport model (Schrijver et al., ApJ 2002) to estimate the total surface magnetic flux back to the 1600s.

- Their total magnetic flux est. in 2008-2009 agrees with ours & they suggest this is lowest SC minimum flux since Maunder Minimum.

- Improving models difficult because of complex magnetic topology. Van Ballegooijen, Mackay, Yeates group developed pragmatic approach using nonlinear, force-free models of local structures → initialized with a flux-rope structure in corona.
 - Yeates (2014) used this model to simulate continuous mag.-field evolution in global solar corona over 15 years; 1996-2012.
 - Model allows for buildup & transport of free mag. energy, electric currents, and mag. helicity.
 - Helicity tends to concentrate in FR structures overlying PILs. When too much helicity accumulates, the FRs "erupt" & are ejected out of simulation domain.
- Large-scale coronal activity at SC minima appears as gradual reconfigurations (& CMEs) of streamer structures that characterize the flattened HCS.

- Likely related to min. threshold for magnetic energy dissipation or ejection of mag. helicity.

Flux Transport w/ Magneto-Friction Model and CME Rates

Resulting modeled Flux Rope distributions:

- Latitude-time distributions of:
- (a) flux ropes and
- (b) FR eruptions

- (c) Yeates (2014) FR eruptions (black) vs LASCO CDAW CME rates / 3 (red).

- These simulation results are in remarkable agreement with overall shape of LASCO CME rate distribution.

- Rates similar to actual CME rates at last 2 minima and support idea of a base level of activity.

- CMEs are an important aspect of solar activity and space weather.
- Into SC 23 CME rate continued to track SSN/MF in both phase & amplitude:
 - Late SC 23 & SC 24 rates diverged \rightarrow more CMEs per unit SSN.
 - Related to weak polar magnetic fields during extended SC 23/24 minimum.
 - Correlation of CME and SSN/MF rates varies over different SC phases → likely because there are two solar sources of CMEs.
- Observations of CMEs now extend over ~ 4 SCs:
 - MLSO observations used to fill "coronagraph gap" from 1989-1996.
 - Have CME rates for 4 SC minima (0.3 0.8/day) and maxima (2.5 4.7/day).
 - LASCO & STEREO SC 23/24 rates higher than earlier coronagraphs due to increased sensitivity.
- CMEs never cease during a solar cycle but maintain a base level of 1 CME every 1.5 – 3 days at minima.

Thanks for your attention.

Data Sources & Analyses:

Tom Kuchar; ISR, Boston College Chris St. Cyr, Hong Xie, Laura Balmaceda, Nat Gopalswamy; NASA GSFC Bram Bourgoignie; SIDC & Royal Obs., Belgium Jon Bannick, Phil Hess, Jie Zhang; George Mason Univ. Seiji Yashiro; Catholic University of America Angelos Vourlidas; JHU/APL

David F. Webb

david.webb@bc.edu

1-617-552-6135

DWebb ISWI May2019