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Abstract  The established technique of eliminating upper or lower parameters in a general hypergeometric series is 
profitably exploited to create pathways among confluent hypergeometric functions, binomial functions, Bessel functions, 
and exponential series. One such pathway, from the mathematical statistics point of view, results in distributions which 
naturally emerge within nonextensive statistical mechanics and Beck-Cohen superstatistics, as pursued in generalizations of 
Boltzmann-Gibbs statistics.  
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1 Introduction 
The celebrated Boltzmann-Gibbs (BG) statistical 

mechanics, in its classical version, typically holds for 
many-body systems whose microscopic nonlinear 
dynamics is ergodic, either in the entire Γ  phase space, 
or in at least one of its subspaces determined by 
relevant symmetry considerations. For example, for 
classical ferromagnets (say the infinite-spin Heisenberg 
ferromagnet in three dimensions) exhibiting a second 
order phase transition, ergodicity applies to the entire 
Γ  phase space for temperatures above the critical 
one, and only to one of the subspaces generated by 
the corresponding breakdown of symmetry for 
temperatures below the critical one. Analogous 
requirements must be satisfied for quantum systems, 
where the role of the Γ  phase space is played by the 
appropriate Hilbert or Fock spaces. A fundamental 
question arises for the plethora of physical systems 
which violate ergodicity in the sense just mentioned: Is it 
possible to have for them a statistical mechanical 

theory similar to the usual one, and also connected to 

thermodynamics? 
It was suggested in 1988 [1] that this is indeed 

possible based on a simple hypothesis, namely the 
generalization of the BG entropy, given (say in its 
continuous version) by  

∫= )(ln)(. xpxpdxS
BG
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The generalization that was then proposed is given 
by  
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Before proceeding, let us mention here that 
entropic forms generalizing the 
Boltzmann-Gibbs-Shannon-von Neumann one has in 

fact a long history in information theory, cibernetics and 
related areas [2, 3]. Indeed, along the years, the same 
or similar or related forms have been introduced again 
and again as possible mathematical functionals. For 
example, the Renyi form (defined here below) has 
been useful as a characterization of multifractal 
geometry. It appears, however, to be inadequate for 
thermodynamics since it is not concave for an 
important range of its parameter q, namely for q>1, 
where many physical systems exist. Although 

independently postulated, the entropic functional 
q

S  

turns out to be mathematically very close to those of 
Havrda-Charvat, Daroczy, Lindhard-Nielsen, and 
Mathai-Rathie. In physics, this type of functional was 
used [1, 4, 5] to propose the generalization of the 
celebrated Boltzmann-Gibbs theory, including the 
Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein 
distributions, as well as their connections to 
thermodynamics.  

The extremization of 
q

S  under appropriate 

constraints (nonvanishing first moment, or nonvanishing 
second moment if the first moment is zero) yields the 

q-exponential form [ x

q
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. These functions 

belong to a complex net of related and more general 
functions, whose systematic discussion constitutes the 
aim of the present paper. 

The above q-exponential functions emerge in a 
considerable amount of natural, artificial and social 
systems. For example (i) The velocity distribution of (cells 
of) Hydra viridissima follows a q=3/2 PDF [6]; (ii) The 
velocity distribution of (cells of)  Dictyostelium 

discoideum follows a q=5/3 PDF in the vegetative state 
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and a q=2 PDF in the starved state [7]; (iii) The velocity 
distribution in defect turbulence [8]; (iv) The velocity 
distribution of cold atoms in a dissipative optical lattice 
[9]; (v) The velocity distribution during silo drainage [10, 
11]; (vi) The velocity distribution in a driven-dissipative 
2D dusty plasma, with q=1.08±0.01 and q=1.05±0.01 at 
temperatures of 300000K and 610000K respectively [12]; 
(vii) The spatial (Monte Carlo) distributions of a trapped 
136

Ba
+
 ion cooled by various classical buffer gases at 

300 K [13]; (viii) The distributions of price returns and 
stock volumes at the stock exchange, as well as the 
volatility smile [14, 15, 16, 17]; (ix) The distributions of 
returns of magnetic field fluctuations in the solar wind 
plasma as observed in data from Voyager 1 [18] and 
from Voyager 2 [19]; (x) The distributions of returns in the 
Ehrenfest’s dog-flea model [20, 21]; (xi)The distributions 
of returns in the coherent noise model [22]; (xii) The 
distributions of returns of the avalanche sizes in the 
self-organized critical Olami-Feder-Christensen model, 
as well as in real earthquakes [23]; (xiii) The distributions 
of angles in the HMF model [24]; (xiv) The distribution of 
stellar rotational velocities in the Pleiades [25]; (xv) The 
relaxation in various paradigmatic spin-glass 
substances through neutron spin echo experiments 
[26]; (xvi) Various properties directly related with the 
time dependence of the width of the ozone layer 
around the Earth [27]; (xvii) The distribution of transverse 
momenta in high energy collisions of electron-positron, 
proton-proton, and heavy nuclei (e.g., Pb-Pb and 
Au-Au) [28, 29, 30, 31, 32, 33, 34], the flux of solar 
neutrinos [35], and the energy distribution of cosmic 
rays [36]; (xviii) Various properties for conservative and 
dissipative nonlinear dynamical systems [37, 38, 39, 40, 
41, 42, 43, 44, 45]; (xix) The degree distribution of 
(asymptotically) scale-free networks [46, 47], and 
others. 

The length of this list illustrates the relevance of a 
deeper understanding of the connections of the 
q-exponential functions with other functions (derivable 
or not from various entropic forms) within a variety of 
pathways, some of which also emerge in applications. 
This leads us to the next Section.  

2  Hypergeometric Series 
Consider a confluent hypergeometric series  
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If we want to remove the denominator parameter, 
then a well known technique in the area of special 
functions is to replace x by b x and then take the limit 
when ∞→b . Due to the fact that  
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we have  
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Hence a pathway between the binomial function 

a
x

−− )(1  and the 
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F  series is given by the limit of 
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when ∞→b . Going the other way one can build up a 

bridge between 
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F  and 
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F  by introducing 
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Similarly one can go back and forth from a Bessel 

function 
10

F  to a 
01

F  or to a 
00

F  which is the 

exponential series. Let us look at going from a binomial 
series to an exponential series.  
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In other words,  
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Thus a pathway between the exponential function 

0>−
ce

cx
,   and the binomial function )(

])([
α−α−− 11

11 xc   

can be created with the help of the pathway 
parameter α. When α is very close to 1, the binomial 
and exponential functions are very close to each other 
and they will be farther apart when α is away from 1. 

Observe that  ∞<<>−
xce

cx
00,,  and )(
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11 xc , 
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c
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010 >>α> xc ,,  are integrable functions and hence 

one can create statistical densities out of them. Thus a 
pathway connecting the three types of densities  
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where 
321

λλλ  are the appropriate normalizing 

constants, can be created with the help of the 
pathway parameter α. Observe that in f1, f2 and f3 one 

can replace x by |x|, −∞<x<∞ or x by |x|
δ
,δ>0 and still 

all the three forms can create densities. Note that f1 
stays in the exponential/gamma type densities, f2 stays 
as a type-1 beta form and f3 a type-2 beta form. By 
exploiting these observations, Mathai has introduced 
[48] the pathway model connecting exponential type 
and binomial type functions. 
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Another rich area is the class of Bessel functions. As 
indicated above, a Bessel function can be written in 

terms of a hypergeometric function );;( xbF
10

 and one 

can remove the denominator parameter b by 
replacing x by bx and then using the limit b→∞. In other 
words,  
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Thus α can provide a pathway between Bessel 

functions and exponential functions. If the exponential 
form gives the stable situation, then the parameter α will 

provide a pathway between stable and chaotic 
situations. So far this area is not explored. In this 
connection one can obtain an interesting result by 
using the integral representation of a Gauss 

hypergeometric function 
12

F , namely,  

∫
−−−− +−

−ΓΓ

Γ
=

=−
1

0

11

12

11 dxzxxx
aca

c

zcbaF

baca
)()(

)()(

)(

);;,(

 

(11) 

100 <>−ℜ>ℜ zaca ;)(;)(   

Hence,  

11

1

11

1

0

11

1

0

11

1211

<<

−
−ΓΓ

Γ
=

=+−
−ΓΓ

Γ
=

=−=−

∫

∫

−−−−

−−−−

∞→

zx

dxexx
aca

c

dx
b

zx
xx

aca

c

b

x
cbaFzcaF

zxaca

baca

b

,

)(
)()(

)(

)()(
)()(

)(

);;,(lim);;(

 (12) 

Thus a pathway between 
11

F  and 
12

F  is given by 

(12). Many such results can be obtained by using this 
technique of eliminating one or more numerator or 
denominator parameters from a general 

hypergeometric series 
qq

F . 

Thus for a real scalar random variable x, the 
pathway density can be written in the following form:  
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A more general form of the pathway density is the 
following:  

α−

η
δγ

α−−λ= 1
55
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where 0>α and ),,,( αγδη  are such that )(xf
5

 is 

normalizable. A large number of commonly used 
statistical densities can be seen to be particular cases 
of (14), details may be seen in [48, 49, 50]. From the 
point of view of mathematical statistics, nonextensive 
statistics [1, 4, 5, 52, 53, 54] with constant density of 
states is a particular case of (14) for 00 >=γ x, . The 

case 0≠γ  can be seen as the particular case when 

the density of states is given by a power law (which is 
quite frequent in many physical systems). One of the 

forms of the Beck-Cohen superstatistics [55, 56] is a 
special case of (14) for 010 >>α=γ x,, . 

3 Density from Optimization of Entropy 
In situations when an appropriate density is selected, 

one guiding principle is the maximization of entropy. 
Entropy or a measure of uncertainty in a scheme or 
“information” in a scheme is traditionally measured by 
Shannon entropy. Consider a discrete distribution 
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Shannon entropy on this scheme is S(P), where  
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When a 
iii

ppp ln0=  is to be interpreted as zero. 

Several characterization theorems on S(P) or axiomatic 
definitions may be seen from [3]. There are several 
extensions or generalizations of the measure Sk(P). 
Classical generalizations in information theory are the 

Havrda-Charvát measure , and the Rényi 
measure , where 
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These are generalizations in the sense that when  

)()(, PSPH →→α α1  and )()( PSPR →α . Out of these, 

S(P) and )(PRα are additive and )(PH α  is nonadditive. 

The additivity property is defined as follows: Consider a 
bivariate discrete distribution in the sense 

njmip
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p . What 

happens if there is the product probability property 
(PPP), which in statistical literature is known as statistical 
independence. What happens is that 
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product probability property. When PPP holds, if the 
entropy in the joint distribution 

njmipQP
ij

LL ,;.,);();( 11 ===  is the sum of the 

entropies on P and Q then we say that there is additivity. 

It is easily seen that there is additivity in S(P) and  )(PRα , 

that is, 

)()(),( QRPRQPR ααα +=  and 

)()(),( QSPSQPS +=  
(17) 

This additivity holds due to the logarithmic nature of 

the function in )(PS
k

 and )(PRα  and the logarithm of a 

product of positive quantities being the sum of the 
logarithms. It is explained in [49] that logarithmic 
function enters into an entropy measure due to the 
recursivity axiom which leads into a logarithmic 
function necessarily. 
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In the following we will concentrate on the q-type of 
generalization of entropy measures, and review, for 
completeness, how the extremization of generalized 
entropies yields the probability density which 
correspond to stationary states. It was postulated [1] 
the entropy  
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To avoid confusion, let us mention that, in most of 
the literature of nonextensive statistical mechanics, the 

index α  is noted q, and the entropy  αS is noted 
q

S . 

The Shannon form is obtained as  the  1→α≡q  limit. 

The normalizing factor in Havrda-Charvát entropy 

)(PH α , namely )( 12
1 −α− , is replaced by (1−α). In the 

continuous case, the nonadditive entropy upon which 
nonextensive statistical mechanics is built is then,  
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Over all functions f , what is that particular f  which 

will optimize the nonadditive entropy in (19)? If calculus 
of variation principle is used, then the Euler equation for 

optimizing the entropy αS  under the restrictions  
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by taking 1
1

2 −α=
λ

λ
and λ=λ −α 1

1

1
, where 

1
λ  and 

2
λ  are 

Lagrangian multipliers. The quantity λ can act as the 
normalizing constant. The condition E(x)= fixed, where E 
denotes the expected value, can be interpreted as the 
principle of conservation of the quantity x. When 

x
ef

−λ=→α ,1  which is an exponential function. The 

derivation in (21) does not yield nonextensive statistics 
in its most convenient form. But (21) gives an 
exponential function when  1→α and this exponential 

function is directly related to what is known in the 
literature as the q-exponential function. In order to 
circumvent some difficulties, it was replaced ([1, 5]) the 
second condition that E(x) is fixed by fixing the 
expected value in the escort distribution. The escort 
density is given by  
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and then nonextensive statistics has the form  
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This form can produce densities for 1<α , 1>α  and 

1→α   and further, this form satisfies the power-law 

differential equation  

 (24) 

One can introduce a general measure of entropy, 
which in the discrete and continuous cases are 

denoted by  )(PM α  and )( fM α  respectively, where  
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A characterization of )(PM α  is given in [49] (see also 

[49, 50, 51]). If )( fM α  is optimized under the conditions 

that E(x)= fixed and that f(x) is a density, then the Euler 
equation becomes  
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that (26) readily gives densities for α<1,α>1 and 1→α . 

Further, the entropy itself can be expressed as  
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where  )( α−1  can be interpreted as the strength of 

information in f and this expected value is also 

associated with Kerridge’s “inaccuracy” measure. As a 
simple mathematical remark, let us mention that if the 
entropy in (25) is optimized in an ad hoc manner, 
namely that for all )(xf  such that 0≥)(xf  for all, 

∫ ∫ =∞<> α−γ

x x
fixeddxxfxdxxfx )(][,)(,

)(1
0  and 

fixeddxxfx
x∫ =δ+α−γ

)(][
)(1  then we end up with the density  
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and λ  is the normalizing constant. Through trivial 

changes in the notation, this expression recovers that of 
(14). 

As already mentioned, for 10 =δ=γ ,  in (28) one has 

a particular case of nonextensive statistics. For 
10 >α> ,a  in (28) one has a particular case of the 

superstatistics of Beck and Cohen [55, 56]. For 1<α , 

(28) gives a generalized type-1 beta form for  

)( α−<< δ
110 ax , and for 1>α , (28) gives a generalized 

type-2 beta form. Superstatistics can produce only the 
type-2 beta form and not the type-1 beta form.  

4  Final Remarks 
We utilize the established technique of eliminating 

upper or lower parameters in a general 
hypergeometric series to create pathways among 
confluent hypergeometric functions, binomial functions, 
Bessel functions, and exponential series. Mathai’s 
pathway, from the mathematical statistics point of view, 
results in distributions which also emerge within 
nonextensive statistics and Beck-Cohen superstatistics, 
pursued as generalizations of Boltzmann-Gibbs statistics. 
It was shown that this pathway model can also be 
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derived by optimizing a generalized entropic measure. 
Through Mathai’s pathway approach, exponential and 
binomial type functions are connected through the 
pathway model parameter. The same pathway model 
also leads to a link between Bessel functions and 
exponential functions. The pathway model covers 
statistical densities emanating in nonextensive statistics 
and Beck-Cohen superstatistics as special cases of (28). 
Related results are obtained by optimizing a general 
measure of entropy in (26) (see also [1, 5, 51]). An open 
problem is identified that would allow to entropically 
derive a general density of the form (28) within 
physically meaningful circumstances. Summarizing, 
relations between Mathai’s pathway model and 
nonextensive statistics and Beck-Cohen superstatistics 
were exhibited.  
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